The table shows the rate of change of volume V with respect to time t (in liters per minute) of a balloon for selected times t, in minutes. 4 t dV dt i=1 ΣV'(ui) Ati 1 = 7 2.5 6 3 6 Find a left Riemann sum for on the interval [1, 5]. Use four subintervals and the values the table. dv dt (Use decimal notation. Give your answer to one decimal place.) 4 5 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Calculus: Riemann Sums

#### Problem Statement
The table below shows the rate of change of volume \( V \) with respect to time \( t \) (in liters per minute) of a balloon for selected times \( t \), in minutes.

| \( t \)        | 1   | 2.5 | 3  | 4  | 5  |
|----------------|-----|-----|----|----|----|
| \( \frac{dV}{dt} \) | 7   | 6   | 6  | 5  | 4  |

Find a left Riemann sum for \( \frac{dV}{dt} \) on the interval \([1, 5]\). Use four subintervals and the values in the table.

(Use decimal notation. Give your answer to one decimal place.)

### Solution

To find the left Riemann sum, we use the left endpoints for each subinterval. The subintervals from \([1, 5]\) are \([1, 2.5]\), \([2.5, 3]\), \([3, 4]\), and \([4, 5]\).

1. **Subinterval 1: \([1, 2.5]\)**
   - Width \(\Delta t = 2.5 - 1 = 1.5\)
   - Height \( \frac{dV}{dt} = 7 \) (at \( t = 1 \))

2. **Subinterval 2: \([2.5, 3]\)**
   - Width \(\Delta t = 3 - 2.5 = 0.5\)
   - Height \( \frac{dV}{dt} = 6 \) (at \( t = 2.5 \))
   
3. **Subinterval 3: \([3, 4]\)**
   - Width \(\Delta t = 4 - 3 = 1\)
   - Height \( \frac{dV}{dt} = 6 \) (at \( t = 3 \))
   
4. **Subinterval 4: \([4, 5]\)**
   - Width \(\Delta t = 5 - 4 = 1\)
   - Height \( \frac{dV
Transcribed Image Text:### Calculus: Riemann Sums #### Problem Statement The table below shows the rate of change of volume \( V \) with respect to time \( t \) (in liters per minute) of a balloon for selected times \( t \), in minutes. | \( t \) | 1 | 2.5 | 3 | 4 | 5 | |----------------|-----|-----|----|----|----| | \( \frac{dV}{dt} \) | 7 | 6 | 6 | 5 | 4 | Find a left Riemann sum for \( \frac{dV}{dt} \) on the interval \([1, 5]\). Use four subintervals and the values in the table. (Use decimal notation. Give your answer to one decimal place.) ### Solution To find the left Riemann sum, we use the left endpoints for each subinterval. The subintervals from \([1, 5]\) are \([1, 2.5]\), \([2.5, 3]\), \([3, 4]\), and \([4, 5]\). 1. **Subinterval 1: \([1, 2.5]\)** - Width \(\Delta t = 2.5 - 1 = 1.5\) - Height \( \frac{dV}{dt} = 7 \) (at \( t = 1 \)) 2. **Subinterval 2: \([2.5, 3]\)** - Width \(\Delta t = 3 - 2.5 = 0.5\) - Height \( \frac{dV}{dt} = 6 \) (at \( t = 2.5 \)) 3. **Subinterval 3: \([3, 4]\)** - Width \(\Delta t = 4 - 3 = 1\) - Height \( \frac{dV}{dt} = 6 \) (at \( t = 3 \)) 4. **Subinterval 4: \([4, 5]\)** - Width \(\Delta t = 5 - 4 = 1\) - Height \( \frac{dV
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,