The switch is now closed[the switch has no resistance] (h) R2 t + & = 0 q = Ce • Vc = ce¯# ; VRa = IR2 = ce;r'= R2C (True, False) .13= %3! (i) The current through the switch is I = I1 + 12 = + e7 (True, False) (i) The voltage across the switch is zero (True, False)

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

Please do H I J

**Transcription for Educational Website:**

---

**Figure 3:**

Below is an analysis involving an electrical circuit with resistors \( R_1 \) and \( R_2 \), a capacitor \( C \), an electromotive force (emf) \( \varepsilon \), and a switch.

### Analysis:

**3. In Figure 3 before the switch is closed:**

(a) The equation for the charge \( q \) on the capacitor:
\[
(R_1 + R_2) \frac{dq}{dt} + \frac{q}{C} = \varepsilon - q = C \varepsilon (1 - e^{-\frac{t}{\tau}}) \implies I = \frac{\varepsilon}{R_1 + R_2} e^{-\frac{t}{\tau}}, \ 
VC = \varepsilon (1 - e^{-\frac{t}{\tau}}); \ V_{Ri} = IR_i = \frac{\varepsilon R_i}{R_1 + R_2} e^{-\frac{t}{\tau}}; \ \tau = (R_1 + R_2) C \ \text{(True, False)}
\]

(b) The displacement current \( I_d \) through the capacitor is equal to the conduction current through the wires i.e.
\[
I_d = \frac{\varepsilon}{R_1 + R_2}e^{-\frac{t}{\tau}} \ \text{(True, False)}
\]

(c) The time it takes for the voltage across the capacitor to reach half of its maximum value is 
\[
t_{\frac{1}{2}} = (R_1 + R_2) C \ln 2 \ \text{(True, False)}
\]

(d) The power delivered by the battery is 
\[
P_{\varepsilon} = I \varepsilon = \frac{\varepsilon^2}{R_1 + R_2} e^{-\frac{t}{\tau}}
\]
and energy delivered by the battery at time \( t \) is 
\[
E_{\varepsilon} = \int_0^t P_{\varepsilon} dt = q \varepsilon = \varepsilon^2 C (1 - e^{-\frac{t}{\tau}}) \ \text{(True, False)}
\]
Transcribed Image Text:**Transcription for Educational Website:** --- **Figure 3:** Below is an analysis involving an electrical circuit with resistors \( R_1 \) and \( R_2 \), a capacitor \( C \), an electromotive force (emf) \( \varepsilon \), and a switch. ### Analysis: **3. In Figure 3 before the switch is closed:** (a) The equation for the charge \( q \) on the capacitor: \[ (R_1 + R_2) \frac{dq}{dt} + \frac{q}{C} = \varepsilon - q = C \varepsilon (1 - e^{-\frac{t}{\tau}}) \implies I = \frac{\varepsilon}{R_1 + R_2} e^{-\frac{t}{\tau}}, \ VC = \varepsilon (1 - e^{-\frac{t}{\tau}}); \ V_{Ri} = IR_i = \frac{\varepsilon R_i}{R_1 + R_2} e^{-\frac{t}{\tau}}; \ \tau = (R_1 + R_2) C \ \text{(True, False)} \] (b) The displacement current \( I_d \) through the capacitor is equal to the conduction current through the wires i.e. \[ I_d = \frac{\varepsilon}{R_1 + R_2}e^{-\frac{t}{\tau}} \ \text{(True, False)} \] (c) The time it takes for the voltage across the capacitor to reach half of its maximum value is \[ t_{\frac{1}{2}} = (R_1 + R_2) C \ln 2 \ \text{(True, False)} \] (d) The power delivered by the battery is \[ P_{\varepsilon} = I \varepsilon = \frac{\varepsilon^2}{R_1 + R_2} e^{-\frac{t}{\tau}} \] and energy delivered by the battery at time \( t \) is \[ E_{\varepsilon} = \int_0^t P_{\varepsilon} dt = q \varepsilon = \varepsilon^2 C (1 - e^{-\frac{t}{\tau}}) \ \text{(True, False)} \]
Expert Solution
Part H

Let voltage across capacitor be VC and that across resistor be VR

Apply KVL in loop 2,

VR+VC=0IR2+qC=0R2dqdt+qC=0R2dqdt=-qCdqq=-dtR2Ctaking integral on both sides;dqq=-dtR2Cln q = -dtR2C+Cln q = -dtR2C+ln K    ... (since K is a constant, ln K will also be a constant)Taking anti log on both sides;q = e-tR2C+ln Kq = e-tR2Celn Kq =K e-tR2Crepresent R2C as τ;q =K e-tτ

 

Part H

q =K e-tτtaking derivative with respect to t;I=dqdt=-1τ e-tτ=-1R2C e-tτ

 

Voltage across the capacitor is;

Vc=qC    =Ke-tτC    =K'e-tτ       .... ( since C is a fixed value of capacitor, KC will also be a fixed value)

 

Voltage across the resistance is;

VR=IR2    =-1R2Ce-tτ×R2    =-1Ce-tτSince the valie of capacitor is a fixed value, we can re write -1C as a constant value.     =K"e-tτ

 

 

 

 

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
State Diagram and Its Designing
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,