The surface S is parameterized by r(u, v) = (u, 2 cos(v), 2 sin(v)), 1 ≤ u ≤ 3,0 ≤ v≤n. 1. Identify the surface. a ellipsoid b cone c cylinder d paraboloid e plane 2. Find the normal vector ru x rv a (0,2 cos(v), -2 sin(v)) b (0,-2 cos(v), -2 sin(v)) c (1,2 cos(v), -2 sin(v)) d (1,-2 cos(v), -2 sin(v)) e none of the above (enter a, b, c, d, or e) (enter a, b, c, d, or e)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The surface S is parameterized by
r(u, v) = (u, 2 cos(v), 2 sin(v)), 1 ≤ u ≤ 3,0 ≤ v ≤n.
1. Identify the surface.
a ellipsoid
b cone
c cylinder
d paraboloid
e plane
2. Find the normal vector ru x rv
a (0,2 cos(v), -2 sin(v))
b (0,-2 cos(v), -2 sin(v))
c (1,2 cos(v), -2 sin(v))
d (1,-2 cos(v), -2 sin(v))
e none of the above
(enter a, b, c, d, or e)
(enter a, b, c, d, or e)
Transcribed Image Text:The surface S is parameterized by r(u, v) = (u, 2 cos(v), 2 sin(v)), 1 ≤ u ≤ 3,0 ≤ v ≤n. 1. Identify the surface. a ellipsoid b cone c cylinder d paraboloid e plane 2. Find the normal vector ru x rv a (0,2 cos(v), -2 sin(v)) b (0,-2 cos(v), -2 sin(v)) c (1,2 cos(v), -2 sin(v)) d (1,-2 cos(v), -2 sin(v)) e none of the above (enter a, b, c, d, or e) (enter a, b, c, d, or e)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,