The sum of a certain number of consecutive non-negative integers is 2500. Can you find an example of these numbers? Is the solution unique? If yes, explain why. If no, how many solutions are there? *Remember, that the number of terms must be an integer.* P.S. There exists 4 solutions: a=43, n=40;  a=88, n=25; a=309, n=8; a=498, n=5; But what is the formal mathematical proof for this?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

The sum of a certain number of consecutive non-negative integers is 2500. Can you find an example of these numbers? Is the solution unique? If yes, explain why. If no, how many solutions are there?

*Remember, that the number of terms must be an integer.*

P.S. There exists 4 solutions:
a=43, n=40; 
a=88, n=25;
a=309, n=8;
a=498, n=5;
But what is the formal mathematical proof for this?

Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,