The straight-line distance from Earth to Mars at the time the launch is scheduled is 100 million miles. In order to avoid other celestial bodies the rocket must travelin an arc given by the equation y= −1/125*(x−50)^2+20, where x and y are in millions of miles, and the x-axis denotes the straight-line distance to Mars. Find the actual distance travelled by the rocket rounded to the nearest million and then find the approximate time for the trip rounded to the nearest month, assuming a constant speed of 30,000 mph and 30 days in each month. (Hint: Use Arc length formula = ∫ √1+(dy/dx)^2 dx ) b is the upperlimit for this equation and a is the lower limit )
Unitary Method
The word “unitary” comes from the word “unit”, which means a single and complete entity. In this method, we find the value of a unit product from the given number of products, and then we solve for the other number of products.
Speed, Time, and Distance
Imagine you and 3 of your friends are planning to go to the playground at 6 in the evening. Your house is one mile away from the playground and one of your friends named Jim must start at 5 pm to reach the playground by walk. The other two friends are 3 miles away.
Profit and Loss
The amount earned or lost on the sale of one or more items is referred to as the profit or loss on that item.
Units and Measurements
Measurements and comparisons are the foundation of science and engineering. We, therefore, need rules that tell us how things are measured and compared. For these measurements and comparisons, we perform certain experiments, and we will need the experiments to set up the devices.
The straight-line distance from Earth to Mars at the time the launch is scheduled is 100 million miles. In order to avoid other celestial bodies the rocket must travelin an arc given by the equation y= −1/125*(x−50)^2+20, where x and y are in millions of miles, and the x-axis denotes the straight-line distance to Mars. Find the actual distance travelled by the rocket rounded to the nearest million and then find the approximate time for the trip rounded to the nearest month, assuming a constant speed of 30,000 mph and 30 days in each month. (Hint: Use Arc length formula =
∫ √1+(dy/dx)^2 dx ) b is the upperlimit for this equation and a is the lower limit )
Trending now
This is a popular solution!
Step by step
Solved in 3 steps