The state transition matrix has the following properties: 1) For every to stist₂ER, $(testo)=$(testi) 0 (tisto) eq(i) 2) For every to tER, § (t,to) $(tot)=I eg (2) 3 For every to, ter, d§ (t, td=-$(t,to) A (to) Jto Qu: Prove Eq (2) in above. (Using eq:3) eq(3)
The state transition matrix has the following properties: 1) For every to stist₂ER, $(testo)=$(testi) 0 (tisto) eq(i) 2) For every to tER, § (t,to) $(tot)=I eg (2) 3 For every to, ter, d§ (t, td=-$(t,to) A (to) Jto Qu: Prove Eq (2) in above. (Using eq:3) eq(3)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The state transition matrix has the following
properties:
1) For every to stist₂ER, $(testo)-0(testi) (tisto) eq(1)
&
2) For every to tER, § (t, to) $(tg))=I
eg(2)
3) For every to, tER, J (t₁t)- - § (t,t√) A (to)
Jto
Qu: Prove Eq (2) in above. (Using eq. 3)
eq(3)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F19556b7c-c5b6-4b4d-b523-18b6eba0d2d2%2F609dc74a-0caa-4da8-a974-1cc21bfa019e%2Fex1t7ts_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The state transition matrix has the following
properties:
1) For every to stist₂ER, $(testo)-0(testi) (tisto) eq(1)
&
2) For every to tER, § (t, to) $(tg))=I
eg(2)
3) For every to, tER, J (t₁t)- - § (t,t√) A (to)
Jto
Qu: Prove Eq (2) in above. (Using eq. 3)
eq(3)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Given:
A state transition matrix, .
For every , .
To prove:
For every , .
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)