The standard electrode potentials for the reduction of N2 to N2H4 and of O2 to H2O at 298 K are –1.155 V and +0.401 V, respectively, both under alkaline conditions. (i) Write a balanced equation for both of the half cell reactions under alkaline conditions. For the cell reaction where the hydrazine electrode is on the left, calculate the standard EMF of the cell at 298 K. (ii) In a practical cell the concentrations of N2H4 and OH- are 0.5 M and 1.0 M, respectively, and the pressure of O2 and N2 are 0.2 bar and 0.8 bar, respectively. Use the Nernst equation to estimate the cell EMF at 298 K, assuming all activity coefficients are unity.
The standard electrode potentials for the reduction of N2 to N2H4 and of O2 to H2O at 298 K are –1.155 V and +0.401 V, respectively, both under alkaline conditions. (i) Write a balanced equation for both of the half cell reactions under alkaline conditions. For the cell reaction where the hydrazine electrode is on the left, calculate the standard EMF of the cell at 298 K. (ii) In a practical cell the concentrations of N2H4 and OH- are 0.5 M and 1.0 M, respectively, and the pressure of O2 and N2 are 0.2 bar and 0.8 bar, respectively. Use the Nernst equation to estimate the cell EMF at 298 K, assuming all activity coefficients are unity.
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question

Transcribed Image Text:8. In a fuel cell, hydrazine, N2H4, is oxidized to nitrogen, and oxygen is reduced to water.
The standard electrode potentials for the reduction of N2 to N2H4 and of O2 to H2O at 298 K
are –1.155 V and +0.401 V, respectively, both under alkaline conditions.
(i)
Write a balanced equation for both of the half cell reactions under alkaline
conditions. For the cell reaction where the hydrazine electrode is on the left, calculate the
standard EMF of the cell at 298 K.
(ii)
In a practical cell the concentrations of N2H4 and OH- are 0.5 M and 1.0 M,
respectively, and the pressure of O2 and N2 are 0.2 bar and 0.8 bar, respectively. Use the
Nernst equation to estimate the cell EMF at 298 K, assuming all activity coefficients are
unity.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY