The standard basis S = {ej , e2} and two custom bases B = {b1, b2} and C = {c1, c2} for R? are shown in the figures below. Standard basis S = {e1,e2} Standard basis S = {e1, e2} ly y c2 3 3 2 2 e2 e2 1 [id e1 e1 -1 b1 -2 -2 b2 c1 -3 -3 -2 -1 1 2 3 -3 -2 -1 1 2 3 [id t [id ↑ c2 [id b1 b2 c1 Custom basis B = {b1, b2} Custom basis C = {c1, c2}

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question

please answer c thanks

### Change of Basis Matrices

This section provides the matrices used to convert between various custom coordinate systems and the standard coordinate system.

#### a. From Custom \( \mathcal{B} \)-Coordinates to Standard \( \mathcal{S} \)-Coordinates

The change of basis matrix from custom \( \mathcal{B} \)-coordinates to standard \( \mathcal{S} \)-coordinates is given by:

\[
[id]_{\mathcal{B}}^{\mathcal{S}} = \begin{bmatrix} 1 & -1 \\ -1 & -2 \end{bmatrix}
\]

#### b. From Custom \( \mathcal{C} \)-Coordinates to Standard \( \mathcal{S} \)-Coordinates

The change of basis matrix from custom \( \mathcal{C} \)-coordinates to standard \( \mathcal{S} \)-coordinates is:

\[
[id]_{\mathcal{C}}^{\mathcal{S}} = \begin{bmatrix} -2 & -1 \\ -2 & 3 \end{bmatrix}
\]

#### c. From \( \mathcal{B} \)-Coordinates to \( \mathcal{C} \)-Coordinates

The change of basis matrix from \( \mathcal{B} \)-coordinates to \( \mathcal{C} \)-coordinates is:

\[
[id]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix}
\]

#### d. From \( \mathcal{C} \)-Coordinates to \( \mathcal{B} \)-Coordinates

The change of basis matrix from \( \mathcal{C} \)-coordinates to \( \mathcal{B} \)-coordinates is:

\[
[id]_{\mathcal{C}}^{\mathcal{B}} = \begin{bmatrix} -2/3 & -5/3 \\ 4/3 & -2/3 \end{bmatrix}
\] 

### Explanation of Matrices

Each matrix represents a linear transformation that changes the representation of vectors from one coordinate system to another. The elements in these matrices are coefficients that define this transformation.

- **Rows and Columns**: Each column of the matrix represents the transformation of one of the basis vectors.
- **Values**
Transcribed Image Text:### Change of Basis Matrices This section provides the matrices used to convert between various custom coordinate systems and the standard coordinate system. #### a. From Custom \( \mathcal{B} \)-Coordinates to Standard \( \mathcal{S} \)-Coordinates The change of basis matrix from custom \( \mathcal{B} \)-coordinates to standard \( \mathcal{S} \)-coordinates is given by: \[ [id]_{\mathcal{B}}^{\mathcal{S}} = \begin{bmatrix} 1 & -1 \\ -1 & -2 \end{bmatrix} \] #### b. From Custom \( \mathcal{C} \)-Coordinates to Standard \( \mathcal{S} \)-Coordinates The change of basis matrix from custom \( \mathcal{C} \)-coordinates to standard \( \mathcal{S} \)-coordinates is: \[ [id]_{\mathcal{C}}^{\mathcal{S}} = \begin{bmatrix} -2 & -1 \\ -2 & 3 \end{bmatrix} \] #### c. From \( \mathcal{B} \)-Coordinates to \( \mathcal{C} \)-Coordinates The change of basis matrix from \( \mathcal{B} \)-coordinates to \( \mathcal{C} \)-coordinates is: \[ [id]_{\mathcal{B}}^{\mathcal{C}} = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \] #### d. From \( \mathcal{C} \)-Coordinates to \( \mathcal{B} \)-Coordinates The change of basis matrix from \( \mathcal{C} \)-coordinates to \( \mathcal{B} \)-coordinates is: \[ [id]_{\mathcal{C}}^{\mathcal{B}} = \begin{bmatrix} -2/3 & -5/3 \\ 4/3 & -2/3 \end{bmatrix} \] ### Explanation of Matrices Each matrix represents a linear transformation that changes the representation of vectors from one coordinate system to another. The elements in these matrices are coefficients that define this transformation. - **Rows and Columns**: Each column of the matrix represents the transformation of one of the basis vectors. - **Values**
The standard basis \( \mathcal{S} = \{\mathbf{e}_1, \mathbf{e}_2\} \) and two custom bases \( \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \) and \( \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\} \) for \( \mathbb{R}^2 \) are shown in the figures below.

### Top Left Graph
- **Description:** The graph shows the standard basis \( \mathcal{S} = \{\mathbf{e}_1, \mathbf{e}_2\} \).
- **Vectors:**
  - \( \mathbf{e}_1\) in red, pointing along the positive x-axis.
  - \( \mathbf{e}_2\) in red, pointing along the positive y-axis.
  - \( \mathbf{b}_1\) in blue, forms a vector in the positive quadrant.
  - \( \mathbf{b}_2\) in blue, forms a vector in the negative quadrant.
- **Label:** \([id]_{\mathcal{S}_B}\)

### Top Right Graph
- **Description:** The graph shows the standard basis \( \mathcal{S} = \{\mathbf{e}_1, \mathbf{e}_2\} \) overlaid with custom basis \( \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\} \).
- **Vectors:**
  - \( \mathbf{e}_1\) in red, original position along x-axis.
  - \( \mathbf{e}_2\) in red, original position along y-axis.
  - \( \mathbf{c}_1\) in blue, points into the third quadrant.
  - \( \mathbf{c}_2\) in blue, points into the second quadrant.
- **Label:** \([id]_{\mathcal{S}_S}\)

### Bottom Left Graph
- **Description:** The graph displays the custom basis \( \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \).
- **Vectors:**
  - \( \mathbf{b}_1\) in blue, pointing into the fourth quadrant.
  - \( \mathbf{
Transcribed Image Text:The standard basis \( \mathcal{S} = \{\mathbf{e}_1, \mathbf{e}_2\} \) and two custom bases \( \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \) and \( \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\} \) for \( \mathbb{R}^2 \) are shown in the figures below. ### Top Left Graph - **Description:** The graph shows the standard basis \( \mathcal{S} = \{\mathbf{e}_1, \mathbf{e}_2\} \). - **Vectors:** - \( \mathbf{e}_1\) in red, pointing along the positive x-axis. - \( \mathbf{e}_2\) in red, pointing along the positive y-axis. - \( \mathbf{b}_1\) in blue, forms a vector in the positive quadrant. - \( \mathbf{b}_2\) in blue, forms a vector in the negative quadrant. - **Label:** \([id]_{\mathcal{S}_B}\) ### Top Right Graph - **Description:** The graph shows the standard basis \( \mathcal{S} = \{\mathbf{e}_1, \mathbf{e}_2\} \) overlaid with custom basis \( \mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\} \). - **Vectors:** - \( \mathbf{e}_1\) in red, original position along x-axis. - \( \mathbf{e}_2\) in red, original position along y-axis. - \( \mathbf{c}_1\) in blue, points into the third quadrant. - \( \mathbf{c}_2\) in blue, points into the second quadrant. - **Label:** \([id]_{\mathcal{S}_S}\) ### Bottom Left Graph - **Description:** The graph displays the custom basis \( \mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} \). - **Vectors:** - \( \mathbf{b}_1\) in blue, pointing into the fourth quadrant. - \( \mathbf{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education