The solution of the wave equation Urx Gutt. 0 < r < 3. t > 0, which satisfies the boundary conditions u(0, t) = u(3, t) = 0 and the initial conditions u(x, 0) uz(r, 0) = 2 sin () - 3 sin(2r2) + 2 sin(37z) is 0 and -- u(x, t) = E E sin () [an cos (2t) + b, sin (2t)] 2nnt COS where n=1 O a) b1 = 2, b6 -3, bg = 2, bn O otherwise an O b) b1 = , , be = 7, b9 =+, b, = an = 0 otherwise Od ai an = bn O otherwise a6 4元) ag 2, a6 -3, ag =2, an O otherwise d) ai O e) None of these

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Needed to be solved correclty in 20 minutes please solve correctly and provide correct option
The solution of the wave equation Urx
Gutt. 0 < x < 3. t > 0, which
satisfies the boundary conditions u(0, t) = u(3, t) = 0 and the initial
conditions u(x, 0)
Ut(x, 0) = 2 sin() - 3 sin(2rx) + 2 sin(3rz) is
O and
--
2nnt.
u(x, t) = E sin () [an cos (2at) + b, sin
COS
3
where
3
n=1
O a) b1 = 2, b6
-3, bg = 2, bn
O otherwise
an
O b) b1 = ,
, be = 7, bg ==, b, = an = 0 otherwise
C a1
an = bn
O otherwise
a6
47
ag
-3, ag
2, an
0 otherwise
d) ai
2, a6
O e) None of these
Transcribed Image Text:The solution of the wave equation Urx Gutt. 0 < x < 3. t > 0, which satisfies the boundary conditions u(0, t) = u(3, t) = 0 and the initial conditions u(x, 0) Ut(x, 0) = 2 sin() - 3 sin(2rx) + 2 sin(3rz) is O and -- 2nnt. u(x, t) = E sin () [an cos (2at) + b, sin COS 3 where 3 n=1 O a) b1 = 2, b6 -3, bg = 2, bn O otherwise an O b) b1 = , , be = 7, bg ==, b, = an = 0 otherwise C a1 an = bn O otherwise a6 47 ag -3, ag 2, an 0 otherwise d) ai 2, a6 O e) None of these
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,