The solution of the initial value problem y" – 2y' + 2y = 5 sin(t), y(0) = 0, y' (0) = 0 y = e' sin (t) + 2 cos (t) – 2e* cos (t) + sin (t) y = e' sin (t) + 2 cos (t) + 2e cos (t) + cos (t) y = e* cos (t) + 2 cos (t) – 2et cos (t) + sin (t) y = -e' sin (t) + 2 cos (t) + 2e cos (t) + sin (t) y = e=t sin (t)+2 sin (t) – 2e' cos (t) + sin (t)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question

Which is the correct answer?

The solution of the initial value problem y" – 2y' + 2y = 5 sin(t),
y (0) = 0,
y' (0) = 0
%3D
|
y = e' sin (t) + 2 cos (t) - 2et cos (t) + sin (t)
O y = et sin (t) +2 cos (t) + 2e' cos (t) + cos (t)
O y = e' cos (t) +2 cos (t) – 2et cos (t) + sin (t)
O y = -e' sin (t) + 2 cos (t) + 2e* cos (t) + sin (t)
y = et sin (t)+ 2 sin (t) – 2et cos (t) + sin (t)
|
Transcribed Image Text:The solution of the initial value problem y" – 2y' + 2y = 5 sin(t), y (0) = 0, y' (0) = 0 %3D | y = e' sin (t) + 2 cos (t) - 2et cos (t) + sin (t) O y = et sin (t) +2 cos (t) + 2e' cos (t) + cos (t) O y = e' cos (t) +2 cos (t) – 2et cos (t) + sin (t) O y = -e' sin (t) + 2 cos (t) + 2e* cos (t) + sin (t) y = et sin (t)+ 2 sin (t) – 2et cos (t) + sin (t) |
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,