The solution of the differential equation (xy – y²)dx – (x² +y²)dy = 0 is : A) 2 In + 1|- tn -; =-Inx +e B) In + 1| – in - in|--Inx +c C) In ( + 1)"* – tn | -=-Inx + c D) 2 In - 1|- in + 2|- In=-Inx +c E) In + 2| – tn -; = tnx + c F)y=n(x2+ 1) + In v+1 + 이 = -Inx +c Inx +c G) In + 5|– in =-Inx +c H) y = (x² + 1)[ In vx² + 1 + c] y
The solution of the differential equation (xy – y²)dx – (x² +y²)dy = 0 is : A) 2 In + 1|- tn -; =-Inx +e B) In + 1| – in - in|--Inx +c C) In ( + 1)"* – tn | -=-Inx + c D) 2 In - 1|- in + 2|- In=-Inx +c E) In + 2| – tn -; = tnx + c F)y=n(x2+ 1) + In v+1 + 이 = -Inx +c Inx +c G) In + 5|– in =-Inx +c H) y = (x² + 1)[ In vx² + 1 + c] y
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Choose one of the options
![The solution of the differential equation
(xy – y²)dx – (x² + y²)dy = 0 is :
A) 2 In + 1|– in 2|-=-Inx +c
B) In + 1| – in - inE = - Inx + c
C) In ( + 1)" – In ---Inx + c
D) 2 In – 1| – tn + 2| – In = -Inx +c
E) In + 2| – in -; = tnx + c
F) y = tn(x* + 1) + [; in Vz³ +1+c]
G) In + 5|- in-= -Inx + c
H) y = (x² + 1)[ Invx² + 1 + c]
y
y](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe1ea6119-0db5-4d9f-a248-d564c40c6e3b%2F100b1091-eb66-4d72-b1e2-3329ba7d6948%2F1ftou6p_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The solution of the differential equation
(xy – y²)dx – (x² + y²)dy = 0 is :
A) 2 In + 1|– in 2|-=-Inx +c
B) In + 1| – in - inE = - Inx + c
C) In ( + 1)" – In ---Inx + c
D) 2 In – 1| – tn + 2| – In = -Inx +c
E) In + 2| – in -; = tnx + c
F) y = tn(x* + 1) + [; in Vz³ +1+c]
G) In + 5|- in-= -Inx + c
H) y = (x² + 1)[ Invx² + 1 + c]
y
y
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)