The solid E is bounded by the surfaces z = 0 and z = 25 - x^2 - y^2. Set up triple integrals to find the volume of the solid E.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The solid E is bounded by the surfaces z = 0 and z = 25 - x^2 - y^2. Set up triple integrals to find the volume of the solid E.
Expert Solution
Step 1: Set up triple integrals for the volume of the solid E.

 From the given data the solid E is bounded by the surfaces z = 0 and z space equals space 25 space minus space x squared minus space y squared.

   so the  z limit is given by z space equals space 0 space rightwards arrow space space 25 space minus space x squared minus space y squared

          If z = 0 then x squared plus space y squared space equals space 25

        this is a circle at center origin and radius 5.

               The polar coordinate form of the circle is 

                  x space equals space r space cos open parentheses theta close parentheses ,  y space equals space r space sin open parentheses theta close parentheses and  d x space d y space equals space r space d r space d theta then x squared space plus space y squared space equals space r squared

                 where r space equals space 0 space rightwards arrow space 5 and 

                          theta space equals space 0 space t o space 2 straight pi

             the volume of the solid E in triple integrals form as follows:

                         V space equals space integral subscript x space integral subscript y space integral subscript z equals 0 end subscript superscript 25 space minus space x squared minus space y squared end superscript space d z space d y space d x

                             

              

steps

Step by step

Solved in 3 steps with 20 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,