The solar radiation incident on the outside surface of an aluminum shading device is 1300 W/m2. Aluminum absorbs 10% of the incident solar energy, and dissipates it by convection from the back surface and by combined convection and radiation from the outside surface. The convection heat transfer coefficient is 10 W/m2·K for both surfaces, and the ambient/surrounding temperature can be taken 20 °C for both convection and radiation. Assuming that the aluminum shade has a uniform temperature, determine the temperature of the aluminum shading device if it is a) Polished, and b) Oxidized.
The solar radiation incident on the outside surface of an aluminum shading device is 1300 W/m2. Aluminum absorbs 10% of the incident solar energy, and dissipates it by convection from the back surface and by combined convection and radiation from the outside surface. The convection heat transfer coefficient is 10 W/m2·K for both surfaces, and the ambient/surrounding temperature can be taken 20 °C for both convection and radiation. Assuming that the aluminum shade has a uniform temperature, determine the temperature of the aluminum shading device if it is a) Polished, and b) Oxidized.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
100%
The solar radiation incident on the outside surface of an aluminum shading device is 1300 W/m2. Aluminum absorbs 10% of the incident solar energy, and dissipates it by convection from the back surface and by combined convection and radiation from the outside surface. The convection heat transfer coefficient is 10 W/m2·K for both surfaces, and the ambient/surrounding temperature can be taken 20 °C for both convection and radiation. Assuming that the aluminum shade has a uniform temperature, determine the temperature of the aluminum shading device if it is a) Polished, and b) Oxidized.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY