The set of 2 x 3 matrices M2x3 with standard matrix operations is a vector space. Task Select all sets that are subspace of M2x3 221 +12+ 2z3 – 274 + I5 – 316 = 221 - 12- I3 – 3z4 – 3z5 + 2z6 = 1 (I1 I I3 1. 211 – 312 + I3 + z5 I3 + 215 - Z6 -321 – 3z2 + 273 – 14 + 2z5 – 216 = 1 I4 I5 I6 -1 -1 -272 - 14 + 2z5 – 376 -Iz +I3 - 2z4 + 2z6 -11 + 2z2 – 3z3 - 274 + 2z5 = 0 (I1 I I3 211 + 2z2 – 2z3 – 2z4 + 2z5 +2z6 %3D 2. 271 +12+ I3 - 14 + 2z5 – I6 = 271 – 3z3 – 374 – 2z5 – I6 -z1 + 2z2 + 2z3 + 2z4 + I6 -1 1 %3D -1 3. | 271 + z2 - 3z3 +14- Is - I6 IS {(: 4. |-271 – 313 - I4 – 3z5 I5 I1- 213 - 314– Is +16 %3D 5. || -321 +12 - 213 – 374 – 316 = 0 I5 -3z1 - 12- I3+2z4 + 2zs %3D Iz + 2z3 – 14 – 2z5 = | -271 + 12 - Ia + 2zs + I6 -3z3 - 274 – Is + 216 6. %3D I5 1. 1. Il || ||
The set of 2 x 3 matrices M2x3 with standard matrix operations is a vector space. Task Select all sets that are subspace of M2x3 221 +12+ 2z3 – 274 + I5 – 316 = 221 - 12- I3 – 3z4 – 3z5 + 2z6 = 1 (I1 I I3 1. 211 – 312 + I3 + z5 I3 + 215 - Z6 -321 – 3z2 + 273 – 14 + 2z5 – 216 = 1 I4 I5 I6 -1 -1 -272 - 14 + 2z5 – 376 -Iz +I3 - 2z4 + 2z6 -11 + 2z2 – 3z3 - 274 + 2z5 = 0 (I1 I I3 211 + 2z2 – 2z3 – 2z4 + 2z5 +2z6 %3D 2. 271 +12+ I3 - 14 + 2z5 – I6 = 271 – 3z3 – 374 – 2z5 – I6 -z1 + 2z2 + 2z3 + 2z4 + I6 -1 1 %3D -1 3. | 271 + z2 - 3z3 +14- Is - I6 IS {(: 4. |-271 – 313 - I4 – 3z5 I5 I1- 213 - 314– Is +16 %3D 5. || -321 +12 - 213 – 374 – 316 = 0 I5 -3z1 - 12- I3+2z4 + 2zs %3D Iz + 2z3 – 14 – 2z5 = | -271 + 12 - Ia + 2zs + I6 -3z3 - 274 – Is + 216 6. %3D I5 1. 1. Il || ||
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Hi. Can you solve this with explanation? I am beginner in algebra .
![The set of 2 x 3 matrices M2x3 with standard matrix operations is a vector space.
Task
Select all sets that are subspace of M2x3
-214 + I5 -
2x1 - 12 - I3 – 374 – 3z5 + 2x6
211 - 312 + I3 + I5
211 + 12 + 23
3z6
-1
1
1
1.
-1
Is + 215 - 6
- I4 + 2x5 - 2z6.
I4
I5
I6
-3z1 – 312 + 2x3
-1
-2x2 - 14 + 215 – 316
-1
-I3 + I3 - 2x4 + 2z6.
-I1 + 212 - 3r3 - 2x4 + 25
1
%3D
271 + 2x2 – 213 – 214 + 2x5 + 216
1
2.
2x1 + 12 + I3 – 14 + 215
211 – 3z3 – 3z4 – 215
-I1 + 2z2 + 2a3 + 2x4 + z6
I5
I6
- 16
-1
I6
1.
%3D
-1
| 211 + 12 - 3r3 + 14 - I5 – 16
I6
3.
I4
I5
I3
|-2x1 - 3z3 - 4 - 3z5
I6
I4
I5
I1 - 213 – 314 – 15 + I6
| -371 + 12 – 213 – 314 – 316
I1
5.
I4
I5
-3z1 - 12 - T3 + 214 + 2x6
Iz + 2x3 – I4 – 215
|-211 + 12 - T4 + 2z5 + I6
-3z3 – 214 – Is + 216
6.
I4
I5
I6
|| || || ||
|| ||||
|| ||
4.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa428d053-f2a8-423a-af03-1ac76abd7be5%2F61ea67f1-8a8e-411f-8d48-473dc22b5be4%2Fqv4su3c_processed.png&w=3840&q=75)
Transcribed Image Text:The set of 2 x 3 matrices M2x3 with standard matrix operations is a vector space.
Task
Select all sets that are subspace of M2x3
-214 + I5 -
2x1 - 12 - I3 – 374 – 3z5 + 2x6
211 - 312 + I3 + I5
211 + 12 + 23
3z6
-1
1
1
1.
-1
Is + 215 - 6
- I4 + 2x5 - 2z6.
I4
I5
I6
-3z1 – 312 + 2x3
-1
-2x2 - 14 + 215 – 316
-1
-I3 + I3 - 2x4 + 2z6.
-I1 + 212 - 3r3 - 2x4 + 25
1
%3D
271 + 2x2 – 213 – 214 + 2x5 + 216
1
2.
2x1 + 12 + I3 – 14 + 215
211 – 3z3 – 3z4 – 215
-I1 + 2z2 + 2a3 + 2x4 + z6
I5
I6
- 16
-1
I6
1.
%3D
-1
| 211 + 12 - 3r3 + 14 - I5 – 16
I6
3.
I4
I5
I3
|-2x1 - 3z3 - 4 - 3z5
I6
I4
I5
I1 - 213 – 314 – 15 + I6
| -371 + 12 – 213 – 314 – 316
I1
5.
I4
I5
-3z1 - 12 - T3 + 214 + 2x6
Iz + 2x3 – I4 – 215
|-211 + 12 - T4 + 2z5 + I6
-3z3 – 214 – Is + 216
6.
I4
I5
I6
|| || || ||
|| ||||
|| ||
4.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)