The Riemann sum, with the reference function (ad f (a) over the interval- 2, 4, using 2 subintervals of equal length, is given by (G) + 76 ()- (+)') 2 1 (+) 48 - 14 – 66- + 75 - - 27· 22 - 2e 24 slue use left-end umbers), Sze () ()') 4 48 - 14 + 66· + 75- 26 - 27· - 2l use right-end numbers ).
The Riemann sum, with the reference function (ad f (a) over the interval- 2, 4, using 2 subintervals of equal length, is given by (G) + 76 ()- (+)') 2 1 (+) 48 - 14 – 66- + 75 - - 27· 22 - 2e 24 slue use left-end umbers), Sze () ()') 4 48 - 14 + 66· + 75- 26 - 27· - 2l use right-end numbers ).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Concept explainers
Riemann Sum
Riemann Sums is a special type of approximation of the area under a curve by dividing it into multiple simple shapes like rectangles or trapezoids and is used in integrals when finite sums are involved. Figuring out the area of a curve is complex hence this method makes it simple. Usually, we take the help of different integration methods for this purpose. This is one of the major parts of integral calculus.
Riemann Integral
Bernhard Riemann's integral was the first systematic description of the integral of a function on an interval in the branch of mathematics known as real analysis.
Question

Transcribed Image Text:### Numerical Estimation in Calculus
**Problem Statement:**
1. Use a calculator to give a ballpark estimate of each of \( S_{2^{16}} \), \( S_{2^{24}} \), and \( S_{2^{32}} \).
The required degree of accuracy, in terms of the number of digits, is up to the shown number of boxes.
#### Estimation Boxes:
- For \( S_{2^{16}} \):
- \(\begin{cases}
6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\
6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\
\end{cases}
\)
- For \( S_{2^{24}} \):
- \(\begin{cases}
6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\
6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\
\end{cases}
\)
- For \( S_{2^{32}} \):
- \(\begin{cases}
6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\
6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\
\end{cases}
\)
2. Based on the formula for \( S_{2^t} \) given on the previous page, conclude:
\[\int_{x=-2}^{4} x^5 \, dx = \frac{1}{6} \left( \boxed{} \right) - \cdots\
![### Riemann Sums with Reference Function
**Function:**
\[ f(x) = x^5 \]
**Interval:**
\[ \left[ -2, 4 \right] \]
**Subintervals:**
Using \(2^\ell\) subintervals of equal length.
**Riemann Sum:**
The Riemann sum is generally used to approximate the integral of a function over an interval. In this case, the Riemann sum using the reference function \(f(x) = x^5\) over the interval \(\left[ -2, 4 \right]\), using \(2^\ell\) subintervals of equal length, is given by:
\[
S_{2^\ell} =
\begin{cases}
48 \cdot \left(14 - 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right) & \text{(use left-end numbers)}, \\
48 \cdot \left(14 + 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right) & \text{(use right-end numbers)}.
\end{cases}
\]
**Explanation of Notation:**
- **\(48 \cdot \left(\cdots\right)\)**: This factor is likely derived from the length of the interval and constants of the Riemann sum formula.
- **Left-end numbers**: Use the left endpoints of each subinterval to calculate the sum.
- **Right-end numbers**: Use the right endpoints of each subinterval to calculate the sum.
**Components of the Sum:**
- **\(14\)**: Constant term.
- **\(-66 \cdot \left( \frac{1}{2^\ell} \right)\)** or **\(66 \cdot \left( \frac{1}{2^\ell} \right)\)**: First-order term](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F239df334-5b03-4bc0-9001-d398335a6cd3%2Fa7c17302-129e-4e62-b7ae-eaa5dd68f32c%2Fchp0qle.jpeg&w=3840&q=75)
Transcribed Image Text:### Riemann Sums with Reference Function
**Function:**
\[ f(x) = x^5 \]
**Interval:**
\[ \left[ -2, 4 \right] \]
**Subintervals:**
Using \(2^\ell\) subintervals of equal length.
**Riemann Sum:**
The Riemann sum is generally used to approximate the integral of a function over an interval. In this case, the Riemann sum using the reference function \(f(x) = x^5\) over the interval \(\left[ -2, 4 \right]\), using \(2^\ell\) subintervals of equal length, is given by:
\[
S_{2^\ell} =
\begin{cases}
48 \cdot \left(14 - 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right) & \text{(use left-end numbers)}, \\
48 \cdot \left(14 + 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right) & \text{(use right-end numbers)}.
\end{cases}
\]
**Explanation of Notation:**
- **\(48 \cdot \left(\cdots\right)\)**: This factor is likely derived from the length of the interval and constants of the Riemann sum formula.
- **Left-end numbers**: Use the left endpoints of each subinterval to calculate the sum.
- **Right-end numbers**: Use the right endpoints of each subinterval to calculate the sum.
**Components of the Sum:**
- **\(14\)**: Constant term.
- **\(-66 \cdot \left( \frac{1}{2^\ell} \right)\)** or **\(66 \cdot \left( \frac{1}{2^\ell} \right)\)**: First-order term
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

