The Riemann sum, with the reference function (ad f (a) over the interval- 2, 4, using 2 subintervals of equal length, is given by (G) + 76 ()- (+)') 2 1 (+) 48 - 14 – 66- + 75 - - 27· 22 - 2e 24 slue use left-end umbers), Sze () ()') 4 48 - 14 + 66· + 75- 26 - 27· - 2l use right-end numbers ).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Numerical Estimation in Calculus

**Problem Statement:**

1. Use a calculator to give a ballpark estimate of each of \( S_{2^{16}} \), \( S_{2^{24}} \), and \( S_{2^{32}} \).
   The required degree of accuracy, in terms of the number of digits, is up to the shown number of boxes.

#### Estimation Boxes:

- For \( S_{2^{16}} \):
  - \(\begin{cases}
  6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\
  6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\
  \end{cases}
  \)

- For \( S_{2^{24}} \):
  - \(\begin{cases}
  6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\
  6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\
  \end{cases}
  \)

- For \( S_{2^{32}} \):
  - \(\begin{cases}
  6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\
  6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\
  \end{cases}
  \)

2. Based on the formula for \( S_{2^t} \) given on the previous page, conclude:

\[\int_{x=-2}^{4} x^5 \, dx = \frac{1}{6} \left( \boxed{} \right) - \cdots\
Transcribed Image Text:### Numerical Estimation in Calculus **Problem Statement:** 1. Use a calculator to give a ballpark estimate of each of \( S_{2^{16}} \), \( S_{2^{24}} \), and \( S_{2^{32}} \). The required degree of accuracy, in terms of the number of digits, is up to the shown number of boxes. #### Estimation Boxes: - For \( S_{2^{16}} \): - \(\begin{cases} 6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\ 6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\ \end{cases} \) - For \( S_{2^{24}} \): - \(\begin{cases} 6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\ 6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\ \end{cases} \) - For \( S_{2^{32}} \): - \(\begin{cases} 6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use left-end numbers)} \\ 6 & \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \dots & \text{(use right-end numbers)} \\ \end{cases} \) 2. Based on the formula for \( S_{2^t} \) given on the previous page, conclude: \[\int_{x=-2}^{4} x^5 \, dx = \frac{1}{6} \left( \boxed{} \right) - \cdots\
### Riemann Sums with Reference Function

**Function:**

\[ f(x) = x^5 \]

**Interval:**

\[ \left[ -2, 4 \right] \]

**Subintervals:**

Using \(2^\ell\) subintervals of equal length.

**Riemann Sum:**

The Riemann sum is generally used to approximate the integral of a function over an interval. In this case, the Riemann sum using the reference function \(f(x) = x^5\) over the interval \(\left[ -2, 4 \right]\), using \(2^\ell\) subintervals of equal length, is given by:

 \[
 S_{2^\ell} = 
 \begin{cases} 
 48 \cdot \left(14 - 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right)  & \text{(use left-end numbers)}, \\

 48 \cdot \left(14 + 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right)  & \text{(use right-end numbers)}.
 \end{cases}
 \]

**Explanation of Notation:**

- **\(48 \cdot \left(\cdots\right)\)**: This factor is likely derived from the length of the interval and constants of the Riemann sum formula.
- **Left-end numbers**: Use the left endpoints of each subinterval to calculate the sum.
- **Right-end numbers**: Use the right endpoints of each subinterval to calculate the sum.

**Components of the Sum:**

- **\(14\)**: Constant term.
- **\(-66 \cdot \left( \frac{1}{2^\ell} \right)\)** or **\(66 \cdot \left( \frac{1}{2^\ell} \right)\)**: First-order term
Transcribed Image Text:### Riemann Sums with Reference Function **Function:** \[ f(x) = x^5 \] **Interval:** \[ \left[ -2, 4 \right] \] **Subintervals:** Using \(2^\ell\) subintervals of equal length. **Riemann Sum:** The Riemann sum is generally used to approximate the integral of a function over an interval. In this case, the Riemann sum using the reference function \(f(x) = x^5\) over the interval \(\left[ -2, 4 \right]\), using \(2^\ell\) subintervals of equal length, is given by: \[ S_{2^\ell} = \begin{cases} 48 \cdot \left(14 - 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right) & \text{(use left-end numbers)}, \\ 48 \cdot \left(14 + 66 \cdot \left( \frac{1}{2^\ell} \right) + 75 \cdot \left( \frac{1}{2^\ell} \right)^2 - 27 \cdot \left( \frac{1}{2^\ell} \right)^4\right) & \text{(use right-end numbers)}. \end{cases} \] **Explanation of Notation:** - **\(48 \cdot \left(\cdots\right)\)**: This factor is likely derived from the length of the interval and constants of the Riemann sum formula. - **Left-end numbers**: Use the left endpoints of each subinterval to calculate the sum. - **Right-end numbers**: Use the right endpoints of each subinterval to calculate the sum. **Components of the Sum:** - **\(14\)**: Constant term. - **\(-66 \cdot \left( \frac{1}{2^\ell} \right)\)** or **\(66 \cdot \left( \frac{1}{2^\ell} \right)\)**: First-order term
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Definite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,