The resistance R of a copper wire at temperature T = 30°C is R = 152. Estimate the resistance at T = 32 °C, assuming t dR T-30 = 0.0692/°C. (Use decimal notation. Give your answer to two decimal places.) R(32) ≈
The resistance R of a copper wire at temperature T = 30°C is R = 152. Estimate the resistance at T = 32 °C, assuming t dR T-30 = 0.0692/°C. (Use decimal notation. Give your answer to two decimal places.) R(32) ≈
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
ive tried multiple times and never got the answer
![The resistance \( R \) of a copper wire at temperature \( T = 30^\circ \text{C} \) is \( R = 15 \, \Omega \). Estimate the resistance at \( T = 32^\circ \text{C} \), assuming that
\[
\frac{dR}{dT}\bigg|_{T=30} = 0.06 \, \Omega/\text{°C}.
\]
(Use decimal notation. Give your answer to two decimal places.)
\[
R(32) \approx \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Omega
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbe70156d-6630-4fa1-bd10-160edc6ae6ae%2F5c8a64e3-2a79-4f9f-bfc1-dfb6b768fbb4%2Fgfooahf_processed.png&w=3840&q=75)
Transcribed Image Text:The resistance \( R \) of a copper wire at temperature \( T = 30^\circ \text{C} \) is \( R = 15 \, \Omega \). Estimate the resistance at \( T = 32^\circ \text{C} \), assuming that
\[
\frac{dR}{dT}\bigg|_{T=30} = 0.06 \, \Omega/\text{°C}.
\]
(Use decimal notation. Give your answer to two decimal places.)
\[
R(32) \approx \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Omega
\]
![**Task: Use Linearization to Estimate \(\frac{1}{\sqrt{15}}\) and Calculate Percentage Error**
To estimate \(\frac{1}{\sqrt{15}}\) using linearization, we consider the function \(f(x) = \frac{1}{\sqrt{x}}\) and its linear approximation \(L(x)\) at \(a = 16\).
**1. Estimate \(\frac{1}{\sqrt{15}}\) using the linearization \(L(x)\) of \(f(x)\):**
- **Formula:** \(L(x) = f(a) + f'(a)(x - a)\)
- **Given:** \(a = 16\)
- **Instructions:** Use decimal notation. Provide your answer to five decimal places.
**\[L(15) \approx \]**
[Fill in the value after calculation]
---
**2. Find the actual value of \(\frac{1}{\sqrt{15}}\):**
- **Instructions:** Use decimal notation. Provide your answer to five decimal places.
**\[\frac{1}{\sqrt{15}} \approx \]**
[Fill in the actual value]
---
**3. Calculate the percentage error of Linear Approximation:**
- **Formula:** \(\text{Percentage Error} = \left|\frac{\text{Approximate Value} - \text{Actual Value}}{\text{Actual Value}}\right| \times 100%\)
- **Instructions:** Use decimal notation. Provide your answer to two decimal places.
**\[\text{Percentage error} \approx \]**
[Fill in the percentage error]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbe70156d-6630-4fa1-bd10-160edc6ae6ae%2F5c8a64e3-2a79-4f9f-bfc1-dfb6b768fbb4%2F3j5smo2p_processed.png&w=3840&q=75)
Transcribed Image Text:**Task: Use Linearization to Estimate \(\frac{1}{\sqrt{15}}\) and Calculate Percentage Error**
To estimate \(\frac{1}{\sqrt{15}}\) using linearization, we consider the function \(f(x) = \frac{1}{\sqrt{x}}\) and its linear approximation \(L(x)\) at \(a = 16\).
**1. Estimate \(\frac{1}{\sqrt{15}}\) using the linearization \(L(x)\) of \(f(x)\):**
- **Formula:** \(L(x) = f(a) + f'(a)(x - a)\)
- **Given:** \(a = 16\)
- **Instructions:** Use decimal notation. Provide your answer to five decimal places.
**\[L(15) \approx \]**
[Fill in the value after calculation]
---
**2. Find the actual value of \(\frac{1}{\sqrt{15}}\):**
- **Instructions:** Use decimal notation. Provide your answer to five decimal places.
**\[\frac{1}{\sqrt{15}} \approx \]**
[Fill in the actual value]
---
**3. Calculate the percentage error of Linear Approximation:**
- **Formula:** \(\text{Percentage Error} = \left|\frac{\text{Approximate Value} - \text{Actual Value}}{\text{Actual Value}}\right| \times 100%\)
- **Instructions:** Use decimal notation. Provide your answer to two decimal places.
**\[\text{Percentage error} \approx \]**
[Fill in the percentage error]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 7 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning