The resistance R of a copper wire at temperature T = 30°C is R = 152. Estimate the resistance at T = 32 °C, assuming t dR T-30 = 0.0692/°C. (Use decimal notation. Give your answer to two decimal places.) R(32) ≈

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

ive tried multiple times and never got the answer

The resistance \( R \) of a copper wire at temperature \( T = 30^\circ \text{C} \) is \( R = 15 \, \Omega \). Estimate the resistance at \( T = 32^\circ \text{C} \), assuming that 

\[
\frac{dR}{dT}\bigg|_{T=30} = 0.06 \, \Omega/\text{°C}.
\]

(Use decimal notation. Give your answer to two decimal places.)

\[
R(32) \approx \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Omega
\]
Transcribed Image Text:The resistance \( R \) of a copper wire at temperature \( T = 30^\circ \text{C} \) is \( R = 15 \, \Omega \). Estimate the resistance at \( T = 32^\circ \text{C} \), assuming that \[ \frac{dR}{dT}\bigg|_{T=30} = 0.06 \, \Omega/\text{°C}. \] (Use decimal notation. Give your answer to two decimal places.) \[ R(32) \approx \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Omega \]
**Task: Use Linearization to Estimate \(\frac{1}{\sqrt{15}}\) and Calculate Percentage Error**

To estimate \(\frac{1}{\sqrt{15}}\) using linearization, we consider the function \(f(x) = \frac{1}{\sqrt{x}}\) and its linear approximation \(L(x)\) at \(a = 16\).

**1. Estimate \(\frac{1}{\sqrt{15}}\) using the linearization \(L(x)\) of \(f(x)\):**

- **Formula:** \(L(x) = f(a) + f'(a)(x - a)\)

- **Given:** \(a = 16\)

- **Instructions:** Use decimal notation. Provide your answer to five decimal places.

**\[L(15) \approx \]**

[Fill in the value after calculation]

---

**2. Find the actual value of \(\frac{1}{\sqrt{15}}\):**

- **Instructions:** Use decimal notation. Provide your answer to five decimal places.

**\[\frac{1}{\sqrt{15}} \approx \]**

[Fill in the actual value]

---

**3. Calculate the percentage error of Linear Approximation:**

- **Formula:** \(\text{Percentage Error} = \left|\frac{\text{Approximate Value} - \text{Actual Value}}{\text{Actual Value}}\right| \times 100%\)

- **Instructions:** Use decimal notation. Provide your answer to two decimal places.

**\[\text{Percentage error} \approx \]**

[Fill in the percentage error]
Transcribed Image Text:**Task: Use Linearization to Estimate \(\frac{1}{\sqrt{15}}\) and Calculate Percentage Error** To estimate \(\frac{1}{\sqrt{15}}\) using linearization, we consider the function \(f(x) = \frac{1}{\sqrt{x}}\) and its linear approximation \(L(x)\) at \(a = 16\). **1. Estimate \(\frac{1}{\sqrt{15}}\) using the linearization \(L(x)\) of \(f(x)\):** - **Formula:** \(L(x) = f(a) + f'(a)(x - a)\) - **Given:** \(a = 16\) - **Instructions:** Use decimal notation. Provide your answer to five decimal places. **\[L(15) \approx \]** [Fill in the value after calculation] --- **2. Find the actual value of \(\frac{1}{\sqrt{15}}\):** - **Instructions:** Use decimal notation. Provide your answer to five decimal places. **\[\frac{1}{\sqrt{15}} \approx \]** [Fill in the actual value] --- **3. Calculate the percentage error of Linear Approximation:** - **Formula:** \(\text{Percentage Error} = \left|\frac{\text{Approximate Value} - \text{Actual Value}}{\text{Actual Value}}\right| \times 100%\) - **Instructions:** Use decimal notation. Provide your answer to two decimal places. **\[\text{Percentage error} \approx \]** [Fill in the percentage error]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 7 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning