The rate constant for a certain reaction is k = 2.20×10¬3 s-1. If the initial reactant concentration was 0.650 M, what will the concentration be after 9.00 minutes? Express your answer with the appropriate units. • View Available Hint(s) Templates Symbols undo redo Teset keyboard shortcuts help [A]t = Value Units

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Please answer the question

Learning Goal:
To understand how to use integrated rate laws to solve for concentration.
A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing
marker numbers. What mile marker will the car reach after 2 hours?
This problem can easily be solved by calculating how far the car travels and subtracting that distance
from the starting marker of 145.
55 mi/hr x 2 hr = 110 miles traveled
milemarker 145 – 110 miles = milemarker 35
If we were to write a formula for this calculation, we might express it as follows:
milemarker = milemarker, – (speed × time)
where milemarker is the current milemarker and milemarker, is the initial milemarker.
Similarly, the integrated rate law for a zero-order reaction is expressed as follows:
[A] = [A]o – rate x time
or
[A] = [A]o – kt
since
rate = k[A]o = k
A zero-order reaction (Figure 1)proceeds uniformly over time. In other words, the rate does not change
as the reactant concentration changes. In contrast, first-order reaction rates (Figure 2) do change over
time as the reactant concentration changes.
Because the rate of a first-order reaction is nonuniform, its integrated rate law is slightly more
complicated than that of a zero-order reaction.
The integrated rate law for a first-order reaction is expressed as follows:
[A] = [A]ge¬kt
where k is the rate constant for this reaction.
The integrated rate law for a second-order reaction is expressed as follows:
1
JA = kt +
where k is the rate constant for this reaction.
Transcribed Image Text:Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours? This problem can easily be solved by calculating how far the car travels and subtracting that distance from the starting marker of 145. 55 mi/hr x 2 hr = 110 miles traveled milemarker 145 – 110 miles = milemarker 35 If we were to write a formula for this calculation, we might express it as follows: milemarker = milemarker, – (speed × time) where milemarker is the current milemarker and milemarker, is the initial milemarker. Similarly, the integrated rate law for a zero-order reaction is expressed as follows: [A] = [A]o – rate x time or [A] = [A]o – kt since rate = k[A]o = k A zero-order reaction (Figure 1)proceeds uniformly over time. In other words, the rate does not change as the reactant concentration changes. In contrast, first-order reaction rates (Figure 2) do change over time as the reactant concentration changes. Because the rate of a first-order reaction is nonuniform, its integrated rate law is slightly more complicated than that of a zero-order reaction. The integrated rate law for a first-order reaction is expressed as follows: [A] = [A]ge¬kt where k is the rate constant for this reaction. The integrated rate law for a second-order reaction is expressed as follows: 1 JA = kt + where k is the rate constant for this reaction.
The rate constant for a certain reaction is k = 2.20×103 s. If the initial reactant concentration was 0.650 M, what will the concentration be after 9.00 minutes?
Express your answer with the appropriate units.
• View Available Hint(s)
Templates Symbols undo redo reset keyboard shortcuts help
[A]t =
Value
Units
Transcribed Image Text:The rate constant for a certain reaction is k = 2.20×103 s. If the initial reactant concentration was 0.650 M, what will the concentration be after 9.00 minutes? Express your answer with the appropriate units. • View Available Hint(s) Templates Symbols undo redo reset keyboard shortcuts help [A]t = Value Units
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Group 2 Elements
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY