The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x) = −a/x12 − b/x6 where x is the distance between the atoms. (a) At what distance of seperation does the potential energy have a local minimum (not at x = ∞)? (b) What is the force on an atom at this separation? (c) How does the force vary with the separation distance?
The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x) = −a/x12 − b/x6 where x is the distance between the atoms. (a) At what distance of seperation does the potential energy have a local minimum (not at x = ∞)? (b) What is the force on an atom at this separation? (c) How does the force vary with the separation distance?
Related questions
Question
The potential energy function for either one of the two atoms in a diatomic molecule is often approximated by U(x) = −a/x12 − b/x6 where x is the distance between the atoms. (a) At what distance of seperation does the potential energy have a local minimum (not at x = ∞)? (b) What is the force on an atom at this separation? (c) How does the force vary with the separation distance?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps