The position of an object at time tt is given by r(t)r(t). Find the velocity, speed, and acceleration both as functions of tt and at the indicated value of tt. r(t)=⟨3sin(t),4cos(t)⟩ , t=π4   2) Find the position function for the object with the given acceleration, initial velocity, and initial position. a(t)=6ti+cos(2t)j−sin(4t)k, v(0)=j−k, r(0)=i, a(t)=6ti+cos(2t)j−sin(4t)k, v(0)=j−k, r(0)=i,  Position Function

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

1) The position of an object at time tt is given by r(t)r(t). Find the velocity, speed, and acceleration both as functions of tt and at the indicated value of tt.

r(t)=⟨3sin(t),4cos(t)⟩ , t=π4

 

2) Find the position function for the object with the given acceleration, initial velocity, and initial position.

a(t)=6ti+cos(2t)j−sin(4t)k, v(0)=j−k, r(0)=i, a(t)=6ti+cos(2t)j−sin(4t)k, v(0)=j−k, r(0)=i, 

Position Function 

 

 

### Problem: Finding the Position Function

**Question: (1 point)** 
Find the position function for the object with the given acceleration, initial velocity, and initial position.

Given data:
\[ \mathbf{a}(t) = 6t\mathbf{i} + \cos(2t)\mathbf{j} - \sin(4t)\mathbf{k} \]
\[ \mathbf{v}(0) = \mathbf{j} - \mathbf{k} \]
\[ \mathbf{r}(0) = \mathbf{i} \]

**Input Required:**
- Position Function

**Solution Placeholder:**
\[ \text{Position Function} \] (Text box for input without value filled in)

**Explanation:**
To solve this, you need to integrate the acceleration function to find the velocity function, and then integrate the velocity function to find the position function. Make sure to use the given initial conditions to find any constants of integration.
Transcribed Image Text:### Problem: Finding the Position Function **Question: (1 point)** Find the position function for the object with the given acceleration, initial velocity, and initial position. Given data: \[ \mathbf{a}(t) = 6t\mathbf{i} + \cos(2t)\mathbf{j} - \sin(4t)\mathbf{k} \] \[ \mathbf{v}(0) = \mathbf{j} - \mathbf{k} \] \[ \mathbf{r}(0) = \mathbf{i} \] **Input Required:** - Position Function **Solution Placeholder:** \[ \text{Position Function} \] (Text box for input without value filled in) **Explanation:** To solve this, you need to integrate the acceleration function to find the velocity function, and then integrate the velocity function to find the position function. Make sure to use the given initial conditions to find any constants of integration.
**(1 point)** The position of an object at time \( t \) is given by \( \mathbf{r}(t) \). Find the velocity, speed, and acceleration both as functions of \( t \) and at the indicated value of \( t \).

\[ 
\mathbf{r}(t) = \big( 3\sin(t), 4\cos(t) \big) , \quad t = \frac{\pi}{4} 
\]

**Velocity Function** \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_

**Velocity at** \( t = \frac{\pi}{4} \) \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_

**Speed Function** \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_

**Speed at** \( t = \frac{\pi}{4} \) \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_

**Acceleration Function** \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_

**Acceleration at** \( t = \frac{\pi}{4} \) \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_

[link to help page on vectors](#)
Transcribed Image Text:**(1 point)** The position of an object at time \( t \) is given by \( \mathbf{r}(t) \). Find the velocity, speed, and acceleration both as functions of \( t \) and at the indicated value of \( t \). \[ \mathbf{r}(t) = \big( 3\sin(t), 4\cos(t) \big) , \quad t = \frac{\pi}{4} \] **Velocity Function** \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_ **Velocity at** \( t = \frac{\pi}{4} \) \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_ **Speed Function** \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_ **Speed at** \( t = \frac{\pi}{4} \) \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_ **Acceleration Function** \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_ **Acceleration at** \( t = \frac{\pi}{4} \) \(\longrightarrow\) \_\_\_\_\_\_\_\_\_\_\_ [link to help page on vectors](#)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning