The population standard deviation for the heights of dogs, in inches, in a city is 6.2 inches. If we want to be 92% confident that the sample mean is within 2 inches of the true population mean, what is the minimum sample size that can be taken? z0.10 z0.05 z0.04 z0.025 z0.01 z0.005 1.282 1.645 1.751 1.960 2.326 2.576 Use the table above for the z-score, and be sure to round up to the nearest integer.
Inverse Normal Distribution
The method used for finding the corresponding z-critical value in a normal distribution using the known probability is said to be an inverse normal distribution. The inverse normal distribution is a continuous probability distribution with a family of two parameters.
Mean, Median, Mode
It is a descriptive summary of a data set. It can be defined by using some of the measures. The central tendencies do not provide information regarding individual data from the dataset. However, they give a summary of the data set. The central tendency or measure of central tendency is a central or typical value for a probability distribution.
Z-Scores
A z-score is a unit of measurement used in statistics to describe the position of a raw score in terms of its distance from the mean, measured with reference to standard deviation from the mean. Z-scores are useful in statistics because they allow comparison between two scores that belong to different normal distributions.
The population standard deviation for the heights of dogs, in inches, in a city is 6.2 inches. If we want to be 92% confident that the sample mean is within 2 inches of the true population mean, what is the minimum
z0.10 | z0.05 | z0.04 | z0.025 | z0.01 | z0.005 |
---|---|---|---|---|---|
1.282 | 1.645 | 1.751 | 1.960 | 2.326 | 2.576 |
Use the table above for the z-score, and be sure to round up to the nearest integer.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images