The point x = 0 is a regular singular point of the given differential equation. 9 + (x² - 12/13 ) y = 0 Show that the indicial roots r of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.) r= x²y" + xy' + Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, ∞). 25 Oy=C₁x-3/5(1. 25x² + ...) + C₂x³/5(1 - 3x² + x4 + 3328 8 448 9 x4 448 9 3328 - 5 32 + Need Help? Read It 9 3328 25 x4 + 448 + Oy = C₁x-3/5(1 3 32 O y = C₁x - 3/5(1-x². ...) + C₂x³/5(1. Oy = C₁x 3/5(1-x²- ..) + C₂x³/5(1- 3328 3 9 Oy=C₁x-3/5(1-²+2x4+...) + ₂x³/5(1-1/2+²+ 328 +²+...) 8 32 + + 448 25+... 9 x4 + 448 ...) + C₂x³/5(1-32x2² Watch It + 3x2+ 32 52+ 32 + x4 + 25 x4 +

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Discret maths, please type the final answer clearly thanks 

The point \( x = 0 \) is a regular singular point of the given differential equation:

\[ 
x^2 y'' + xy' + \left( x^2 - \frac{9}{25} \right) y = 0 
\]

Show that the indicial roots \( r \) of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.)

\[ 
r = \quad 
\]

Use the method of Frobenius to obtain two linearly independent series solutions about \( x = 0 \). Form the general solution on \( (0, \infty) \).

\[
\begin{align*}
&\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{5}{32} x^2 + \frac{25}{3328} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 - \frac{5}{8} x^2 + \frac{25}{448} x^4 + \cdots \right) \\
&\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{32}{3} x^2 + \frac{9}{3328} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 - \frac{5}{32} x^2 + \frac{9}{448} x^4 + \cdots \right) \\
&\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{5}{32} x^2 + \frac{25}{448} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 - \frac{3}{32} x^2 + \frac{9}{448} x^4 + \cdots \right) \\
&\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{8}{5} x^2 + \frac{25}{448} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 -
Transcribed Image Text:The point \( x = 0 \) is a regular singular point of the given differential equation: \[ x^2 y'' + xy' + \left( x^2 - \frac{9}{25} \right) y = 0 \] Show that the indicial roots \( r \) of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.) \[ r = \quad \] Use the method of Frobenius to obtain two linearly independent series solutions about \( x = 0 \). Form the general solution on \( (0, \infty) \). \[ \begin{align*} &\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{5}{32} x^2 + \frac{25}{3328} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 - \frac{5}{8} x^2 + \frac{25}{448} x^4 + \cdots \right) \\ &\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{32}{3} x^2 + \frac{9}{3328} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 - \frac{5}{32} x^2 + \frac{9}{448} x^4 + \cdots \right) \\ &\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{5}{32} x^2 + \frac{25}{448} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 - \frac{3}{32} x^2 + \frac{9}{448} x^4 + \cdots \right) \\ &\circ \quad y = C_1 x^{3/5} \left( 1 - \frac{8}{5} x^2 + \frac{25}{448} x^4 + \cdots \right) + C_2 x^{3/5} \left( 1 -
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,