The point x = 0 is a regular singular point of the given differential equation. 4xy" y' + 4y = 0 Show that the indicial roots r of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.) r = Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, co). Oy=(1-x++) + ₂x² (₁-x²) C₂x5/4 (1- 4 4 36 Oy=c₁(1 = C₁ 1- 4x + Oy=C₁x5/4 Oy=c₁₂ (1+ 1+ 4x 8x2 32x3 5 135 36 1+ 4x - - 8x² 8x² 32x³ 3 63 + + 5 + 32x³ 63 ..) + + 1-x+ 2+5/4(1 +... + C₂x³/ + 1- 1- ..) + C₂x5/4(1- 4x 8x² 7 77 +.. + 4x 9 4x 8x² + 9 117 8x2 32x3 117 5967 Oy=c₁²/1-4x+8²-32x³ + ...) + C₂(1 - 4x + 8x² - 32x²- (1 7 77 3465 32x3 3465 32x3 5967

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Singular Points and Series Solutions for Differential Equations Using the Frobenius Method

#### Problem Statement

The point \( x = 0 \) is a regular singular point of the given differential equation:
\[ 4xy'' - y' + 4y = 0 \]

#### Task 1: Indicial Roots
Show that the indicial roots \( r \) of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list).

\[ r = \_\_\_\_\_\_ \]

#### Task 2: Frobenius Method
Use the method of Frobenius to obtain two linearly independent series solutions about \( x = 0 \). Form the general solution on \( (0, \infty) \).

#### Options for the General Solution

1.
\[ y = C_1 \left( 1 - x + \frac{x^2}{4} - \frac{x^3}{36} + \cdots \right) + C_2 x^{5/4} \left( 1 - x + \frac{x^2}{4} - \frac{x^3}{36} + \cdots \right) \]

2.
\[ y = C_1 \left( 1 - 4x + \frac{8x^2}{5} - \frac{32x^3}{135} + \cdots \right) + C_2 x^{5/4} \left( 1 - \frac{4x}{7} + \frac{8x^2}{77} - \frac{32x^3}{3465} + \cdots \right) \]

3.
\[ y = C_1 x^{5/4} \left( 1 + 4x - \frac{8x^2}{3} + \frac{32x^3}{63} + \cdots \right) + C_2 \left( 1 - x + \frac{x^2}{4} - \frac{x^3}{36} + \cdots \right) \]

4.
\[ y = C_1 \left( 1 + 4x - \frac{8x^2}{3} + \frac{32x^3}{63} + \cdots \right) + C_2 x^{5/4}
Transcribed Image Text:### Singular Points and Series Solutions for Differential Equations Using the Frobenius Method #### Problem Statement The point \( x = 0 \) is a regular singular point of the given differential equation: \[ 4xy'' - y' + 4y = 0 \] #### Task 1: Indicial Roots Show that the indicial roots \( r \) of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list). \[ r = \_\_\_\_\_\_ \] #### Task 2: Frobenius Method Use the method of Frobenius to obtain two linearly independent series solutions about \( x = 0 \). Form the general solution on \( (0, \infty) \). #### Options for the General Solution 1. \[ y = C_1 \left( 1 - x + \frac{x^2}{4} - \frac{x^3}{36} + \cdots \right) + C_2 x^{5/4} \left( 1 - x + \frac{x^2}{4} - \frac{x^3}{36} + \cdots \right) \] 2. \[ y = C_1 \left( 1 - 4x + \frac{8x^2}{5} - \frac{32x^3}{135} + \cdots \right) + C_2 x^{5/4} \left( 1 - \frac{4x}{7} + \frac{8x^2}{77} - \frac{32x^3}{3465} + \cdots \right) \] 3. \[ y = C_1 x^{5/4} \left( 1 + 4x - \frac{8x^2}{3} + \frac{32x^3}{63} + \cdots \right) + C_2 \left( 1 - x + \frac{x^2}{4} - \frac{x^3}{36} + \cdots \right) \] 4. \[ y = C_1 \left( 1 + 4x - \frac{8x^2}{3} + \frac{32x^3}{63} + \cdots \right) + C_2 x^{5/4}
Expert Solution
steps

Step by step

Solved in 6 steps with 14 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,