The point x = 0 is a regular singular point of the given differential equation. 3x²y" - xy + (x² + 1)y = 0 Show that the indicial roots r of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.) r= Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, ∞). Oy = ₁x¹/3(1-x² 1,2 1 x4 320 1 x² 10 Oy=C₁x¹/³(1-1 14 Oy = C₁x¹/3(1-1x². Oy=C₁x¹/3(1- - + x² 1 10 + + x2 1 392 1 320 + + +4+ 440 v4 + 896 ...) + C₂x (1 -- 1 x² + x4 ...) + C₂ x (1 -. ..) + C₂x (1-. + 1 440 1 12 x4 10 440 1 1 y2 + x4 16 896 1 392 + + A + ..) + C₂x(1 − 1/1/1 x² + . 14 + + 1,2 + Oy=C₁x1/3(1-x²+*+...) ₂x(1-²20¹...) 16 x² + +

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Discret maths, please type the final answer thanks 

The point x = 0 is a regular singular point of the given differential equation.
·3x²y" - xy' + (x² + 1)y = 0
Show that the indicial roots r of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.)
Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, ∞).
1
1
Oy = C₁x¹/³(1 - 1x² + 320x4 + ...) +
₂x(1 - 10x² + ₁x² + ...)
8
440
○ y = C₁x¹/³(1 –
1 2
14
8
Oy=C₁x¹/3(1-1x² + 320
1
4
+
2
1/2 x ² + ...) + C₂x(1 - 11/10 x ² + 140x²
-X +
392
2
○y = C₁x¹/³(1-_¹_x² + _1_x4 +
-X
16
896
·) + ₂x(1 - 1²6x² +
1
1
1
Oy = C₁x¹/³(1-1x² + 4x4 + ...) + C₂x(1 - 4x² + 32 +4 + ...)
+4
10
14
...)
1
₁x² + ...)
896
1.2
1 4
...)
·.) + C₂x(1 - 1x² + 320x² + ...)
-X
8
Transcribed Image Text:The point x = 0 is a regular singular point of the given differential equation. ·3x²y" - xy' + (x² + 1)y = 0 Show that the indicial roots r of the singularity do not differ by an integer. (List the indicial roots below as a comma-separated list.) Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on (0, ∞). 1 1 Oy = C₁x¹/³(1 - 1x² + 320x4 + ...) + ₂x(1 - 10x² + ₁x² + ...) 8 440 ○ y = C₁x¹/³(1 – 1 2 14 8 Oy=C₁x¹/3(1-1x² + 320 1 4 + 2 1/2 x ² + ...) + C₂x(1 - 11/10 x ² + 140x² -X + 392 2 ○y = C₁x¹/³(1-_¹_x² + _1_x4 + -X 16 896 ·) + ₂x(1 - 1²6x² + 1 1 1 Oy = C₁x¹/³(1-1x² + 4x4 + ...) + C₂x(1 - 4x² + 32 +4 + ...) +4 10 14 ...) 1 ₁x² + ...) 896 1.2 1 4 ...) ·.) + C₂x(1 - 1x² + 320x² + ...) -X 8
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,