The perimeter of a rhombus is 64 and one of its angles measures 120°. Find the length of the diagonals. Please explain and solve.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
100%

Previously asked this question, but answer was incomplete. Need to find the diagonal that connects AC as well. That's where I get stuck. Typed response appreciated; poor eyesight. Thank you!

Original Question:

The perimeter of a rhombus is 64 and one of its angles measures 120°. Find the length of the diagonals. Please explain and solve. (Typed response preferred, poor eyesight. Thank you!)

perimeter-4a
where a is the length of the side.
64=4a
a=64/4.
a=16.
So the length of the side is 16.
Let us draw the figure of rhombus and its diagonal for the given data.
D
16
16
60
C
А
60
60
60
16
120
16
B
Step 3
Since the opposite angles are equal in rhombus if ZADC = 120 then
ZABC = 120.
In the above figure BD is the diagonal which divides the rhombus in
to two triangles
A ABD and A BCD.
Since the sum of all the angles in rhombus is 360 and oppsoite
angles are equal
ZDAB = ZDCB = x
So x + x + 120 + 120 = 360
2x = 360 – 240
2x = 120
X = 60, therefore ZDAB = 60 and ZDCB = 60
So in the A ADB
ZDAB = 60, ZADB = 60 and ZABD = 60
So A ABD is a eqiangular triangle.
equiangular triangles are equilaterla triangle .
So BD = AD = AB = 16.
Transcribed Image Text:perimeter-4a where a is the length of the side. 64=4a a=64/4. a=16. So the length of the side is 16. Let us draw the figure of rhombus and its diagonal for the given data. D 16 16 60 C А 60 60 60 16 120 16 B Step 3 Since the opposite angles are equal in rhombus if ZADC = 120 then ZABC = 120. In the above figure BD is the diagonal which divides the rhombus in to two triangles A ABD and A BCD. Since the sum of all the angles in rhombus is 360 and oppsoite angles are equal ZDAB = ZDCB = x So x + x + 120 + 120 = 360 2x = 360 – 240 2x = 120 X = 60, therefore ZDAB = 60 and ZDCB = 60 So in the A ADB ZDAB = 60, ZADB = 60 and ZABD = 60 So A ABD is a eqiangular triangle. equiangular triangles are equilaterla triangle . So BD = AD = AB = 16.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Pythagoras' Theorem
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning