The parametric representation of the surface x² – 8x + z? = 0,0 < y < 5 is a) ř(u, v) = (4 cos u , 4 sin u , v), 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The parametric representation of the surface
x2 – 8x + z2 = 0,0 < y < 5
is
a) ř(u, v) = (4 cos u, 4 sin u , v), 0<u< 2n,0 < v < 5.
b) 7(u, v) = (4 + 4 cos u, v, 4 sin u), 0 < u< 2n,0 < v< 5.
c) 7(u, v) = (4 + 4 cos u , v, 4 + 4 sin u), 0 <u< 2n, 0 < v < 5.
d) ř(u, v) = (4 cos u, v, 4 sin u), 0 < u< 2n, 0 < v < 5.
e) ř(u, v) = (4 + 4 cos u, 4 sin u, v), 0 < u< 2n, 0<v < 5.
Transcribed Image Text:The parametric representation of the surface x2 – 8x + z2 = 0,0 < y < 5 is a) ř(u, v) = (4 cos u, 4 sin u , v), 0<u< 2n,0 < v < 5. b) 7(u, v) = (4 + 4 cos u, v, 4 sin u), 0 < u< 2n,0 < v< 5. c) 7(u, v) = (4 + 4 cos u , v, 4 + 4 sin u), 0 <u< 2n, 0 < v < 5. d) ř(u, v) = (4 cos u, v, 4 sin u), 0 < u< 2n, 0 < v < 5. e) ř(u, v) = (4 + 4 cos u, 4 sin u, v), 0 < u< 2n, 0<v < 5.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Triple Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,