The owner of a chain of mini-markets wants to compare the sales performance of two of her stores, Store 1 and Store 2. Though the two stores have been comparable in the past, the owner has made several improvements to Store 1 and wishes to see if the improvements have made Store 1 more popular than Store 2. Sales can vary considerably depending on the day of the week and the season of the year, so she decides to eliminate such effects by making sure to record each store's sales on the same 10 days, chosen at random. She records the sales (in dollars) for each store on these days, as shown in the table below. 8 9 10 Day 1 2 3 4 6 7 Store 1 462 390 848 621 524 450 807 628 914 713 Store 2 405 259 846 421 387 417 638 672 865 390 Difference 57 (Store 1- Store 2) 131 2 200 137 33 169 -44 49 323 Send data to calculator Based on these data, can the owner conclude, at the 0.10 level of significance, that the mean daily sales of Store 1 exceeds that of Store 2? Answer this question by performing a hypothesis test regarding , (which is u with a letter "d" subscript), the population mean daily sales difference between the two stores. Assume that this population of differences (Store 1 minus Store 2) is normally distributed. Perform a one-tailed test. Then complete the parts below. Carry your intermediate computations to three or more decimal places and round your answers as specified. (If necessary, consult a list of formulas.)
The owner of a chain of mini-markets wants to compare the sales performance of two of her stores, Store 1 and Store 2. Though the two stores have been comparable in the past, the owner has made several improvements to Store 1 and wishes to see if the improvements have made Store 1 more popular than Store 2. Sales can vary considerably depending on the day of the week and the season of the year, so she decides to eliminate such effects by making sure to record each store's sales on the same 10 days, chosen at random. She records the sales (in dollars) for each store on these days, as shown in the table below. 8 9 10 Day 1 2 3 4 6 7 Store 1 462 390 848 621 524 450 807 628 914 713 Store 2 405 259 846 421 387 417 638 672 865 390 Difference 57 (Store 1- Store 2) 131 2 200 137 33 169 -44 49 323 Send data to calculator Based on these data, can the owner conclude, at the 0.10 level of significance, that the mean daily sales of Store 1 exceeds that of Store 2? Answer this question by performing a hypothesis test regarding , (which is u with a letter "d" subscript), the population mean daily sales difference between the two stores. Assume that this population of differences (Store 1 minus Store 2) is normally distributed. Perform a one-tailed test. Then complete the parts below. Carry your intermediate computations to three or more decimal places and round your answers as specified. (If necessary, consult a list of formulas.)
Chapter7: Systems Of Equations And Inequalities
Section7.1: Systems Of Linear Equations: Two Variables
Problem 2SE: If you are performing a break-even analysis for a business and their cost and revenue equations are...
Related questions
Question
state the degrees of freedom if necessary
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill