The orthogonal projection of the vector is ... 10/9 7/9 -1 3 onto the subspace V = span 2

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Problem Description:**

Determine the orthogonal projection of the vector 

\[
\begin{bmatrix}
1 \\
-1 \\
3 \\
2
\end{bmatrix}
\]

onto the subspace \( V \) spanned by the vectors 

\[
\begin{bmatrix}
2 \\
1 \\
2 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
-2 \\
1
\end{bmatrix}
\].

**Options:**

A. 

\[
\begin{bmatrix}
10/9 \\
7/9 \\
2 \\
-2/9
\end{bmatrix}
\]

B. 

\[
\begin{bmatrix}
-5/9 \\
14/9 \\
7/9 \\
1
\end{bmatrix}
\]

C. 

\[
\begin{bmatrix}
5/9 \\
11/9 \\
-7/9 \\
3
\end{bmatrix}
\]

D. 

\[
\begin{bmatrix}
8/9 \\
-7/9 \\
2/9 \\
3
\end{bmatrix}
\]

**Explanation:**

To find the orthogonal projection of a vector onto a subspace spanned by multiple vectors, follow these steps:

1. Construct a matrix with the spanning vectors as columns.
2. Use the formula for projection: if \( A \) is the matrix of the spanning vectors, then the projection of a vector \( \mathbf{b} \) onto the column space of \( A \) is given by:
   \[
   \text{proj}_{\text{Col}(A)}(\mathbf{b}) = A(A^TA)^{-1}A^T\mathbf{b}
   \]
3. Compute this expression to obtain the projected vector, then compare it with the provided options.

This procedure helps in determining the option that contains the vector representing the orthogonal projection of the given vector onto the specified subspace.
Transcribed Image Text:**Problem Description:** Determine the orthogonal projection of the vector \[ \begin{bmatrix} 1 \\ -1 \\ 3 \\ 2 \end{bmatrix} \] onto the subspace \( V \) spanned by the vectors \[ \begin{bmatrix} 2 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix} \]. **Options:** A. \[ \begin{bmatrix} 10/9 \\ 7/9 \\ 2 \\ -2/9 \end{bmatrix} \] B. \[ \begin{bmatrix} -5/9 \\ 14/9 \\ 7/9 \\ 1 \end{bmatrix} \] C. \[ \begin{bmatrix} 5/9 \\ 11/9 \\ -7/9 \\ 3 \end{bmatrix} \] D. \[ \begin{bmatrix} 8/9 \\ -7/9 \\ 2/9 \\ 3 \end{bmatrix} \] **Explanation:** To find the orthogonal projection of a vector onto a subspace spanned by multiple vectors, follow these steps: 1. Construct a matrix with the spanning vectors as columns. 2. Use the formula for projection: if \( A \) is the matrix of the spanning vectors, then the projection of a vector \( \mathbf{b} \) onto the column space of \( A \) is given by: \[ \text{proj}_{\text{Col}(A)}(\mathbf{b}) = A(A^TA)^{-1}A^T\mathbf{b} \] 3. Compute this expression to obtain the projected vector, then compare it with the provided options. This procedure helps in determining the option that contains the vector representing the orthogonal projection of the given vector onto the specified subspace.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education