The optimal solution of this linear programming problem is at the intersection of constraints 1 and 2. Max 6x1 + 3x2 s.t. 4x1 + x2 ≤ 400 4x1 + 3x2 ≤ 600 x1 + 2x2 ≤ 300 x1, x2 ≥ 0 (a) Over what range can the coefficient of x1 vary before the current solution is no longer optimal? (Round your answers to two decimal places.) ------ to -------- (b) Over what range can the coefficient of x2 vary before the current solution is no longer optimal? (Round your answers to two decimal places.) ----- to -------- (c) Compute the dual value for the first constraint, second constraint & third constraint
The optimal solution of this linear programming problem is at the intersection of constraints 1 and 2. Max 6x1 + 3x2 s.t. 4x1 + x2 ≤ 400 4x1 + 3x2 ≤ 600 x1 + 2x2 ≤ 300 x1, x2 ≥ 0 (a) Over what range can the coefficient of x1 vary before the current solution is no longer optimal? (Round your answers to two decimal places.) ------ to -------- (b) Over what range can the coefficient of x2 vary before the current solution is no longer optimal? (Round your answers to two decimal places.) ----- to -------- (c) Compute the dual value for the first constraint, second constraint & third constraint
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
The optimal solution of this linear programming problem is at the intersection of constraints 1 and 2.
Max 6x1 + 3x2
s.t. | ||||
4x1 + x2 | ≤ | 400 | ||
4x1 + 3x2 | ≤ | 600 | ||
x1 + 2x2 | ≤ | 300 | ||
x1, x2 | ≥ |
0
|
(a)
Over what range can the coefficient of x1 vary before the current solution is no longer optimal? (Round your answers to two decimal places.)
------ to --------
(b)
Over what range can the coefficient of x2 vary before the current solution is no longer optimal? (Round your answers to two decimal places.)
----- to --------
(c)
Compute the dual value for the first constraint, second constraint & third constraint
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

