The one-dimensional harmonic oscillator has the Lagrangian L = mx˙2 − kx2/2. Suppose you did not know the solution of the motion, but realized that the motion must be periodic and therefore could be described by a Fourier series of the form x(t) =∑j=0 aj cos jωt, (taking t = 0 at a turning point) where ω is the (unknown) angular frequency

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

The one-dimensional harmonic oscillator has the Lagrangian

L = m2kx2/2. Suppose you did not know the solution of the motion, but realized that the motion must be periodic and therefore could be described by a Fourier series of the form

x(t) =∑j=0 aj cos jωt,

(taking t = 0 at a turning point) where ω is the (unknown) angular frequency of the motion. This representation for x(t) defines many_parameter path for the system point in configuration space. Consider the action integral I for two points t1 and t2 separated by the period

T = 2π/ω. Show that with this form for the system path, I is an extremum for nonvanishing x only if aj = 0, for j ≠ 1, and only if ω2 = k/m.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY