the null space, and the row space of the matrix A.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Find Bases for the Null Space and Row Space of a Matrix**

Given the matrix \( A \), we need to find the bases for its null space and row space. The matrix \( A \) is:

\[
A = \begin{bmatrix}
1 & 3 & 4 & 6 & 8 \\
2 & -10 & -8 & -4 & -16 \\
-1 & 0 & -1 & 0 & -2 \\
3 & 4 & 7 & 13 & 14
\end{bmatrix}
\]

**Null Space of A**

The basis vectors for the null space of \( A \) are:

\[
\mathbf{v_1} = \begin{bmatrix}
-1 \\
-1 \\
1 \\
0 \\
0
\end{bmatrix}
\]

\[
\mathbf{v_2} = \begin{bmatrix}
-2 \\
-2 \\
0 \\
0 \\
1
\end{bmatrix}
\]

**Row Space of A**

The basis vectors for the row space of \( A \) are:

\[
\mathbf{r_1} = \begin{bmatrix}
1 \\
3 \\
4 \\
6 \\
8
\end{bmatrix}
\]

\[
\mathbf{r_2} = \begin{bmatrix}
0 \\
1 \\
1 \\
1 \\
2
\end{bmatrix}
\]

\[
\mathbf{r_3} = \begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0
\end{bmatrix}
\]
Transcribed Image Text:**Find Bases for the Null Space and Row Space of a Matrix** Given the matrix \( A \), we need to find the bases for its null space and row space. The matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 3 & 4 & 6 & 8 \\ 2 & -10 & -8 & -4 & -16 \\ -1 & 0 & -1 & 0 & -2 \\ 3 & 4 & 7 & 13 & 14 \end{bmatrix} \] **Null Space of A** The basis vectors for the null space of \( A \) are: \[ \mathbf{v_1} = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \] \[ \mathbf{v_2} = \begin{bmatrix} -2 \\ -2 \\ 0 \\ 0 \\ 1 \end{bmatrix} \] **Row Space of A** The basis vectors for the row space of \( A \) are: \[ \mathbf{r_1} = \begin{bmatrix} 1 \\ 3 \\ 4 \\ 6 \\ 8 \end{bmatrix} \] \[ \mathbf{r_2} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \] \[ \mathbf{r_3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,