The next proposition provides a more general example of a linear functional on R". Proposition 1.2. Let a₁, a2,,an be fixed real numbers. Let q: R" → R be given by q(0) = α₁x₁ + x2x2 + ... + anxn, where v = (x₁,x2,...,xn). Then q is a linear functional. Project Problem 1: Prove the above Proposition 1.2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please solve this
### 1. Linear Functionals

**Definition 1.1.** Let \( V \) be a vector space over \( \mathbb{R} \). A linear functional on \( V \) is a linear map \( \varphi : V \to \mathbb{R} \).

**Examples:**

1. **Example 1:** Consider \( V = \mathbb{R}^n \), and \( \varphi : \mathbb{R}^n \to \mathbb{R} \) given by \( \varphi(\vec{v}) = x_1 + \cdots + x_n \), where \( \vec{v} = (x_1, x_2, \cdots, x_n) \). Then \( \varphi \) is a linear functional.

   The next proposition provides a more general example of a linear functional on \( \mathbb{R}^n \).

**Proposition 1.2.** Let \( a_1, a_2, \cdots, a_n \) be fixed real numbers. Let \( \varphi : \mathbb{R}^n \to \mathbb{R} \) be given by \( \varphi(\vec{v}) = a_1x_1 + a_2x_2 + \cdots + a_n x_n \), where \( \vec{v} = (x_1, x_2, \cdots, x_n) \). Then \( \varphi \) is a linear functional.

- **Project Problem 1:** Prove the above Proposition 1.2.

2. **Example 2:** Consider \( V = M_2(\mathbb{R}) \), where \( M_2(\mathbb{R}) \) denotes the set of all \( 2 \times 2 \) matrices with real entries. Let \( \operatorname{Tr} : M_2(\mathbb{R}) \to \mathbb{R} \) be given by \( \operatorname{Tr}\left[\begin{matrix} a & b \\ c & d \end{matrix}\right] = a + d \).

   Then \( \operatorname{Tr} \) is a linear functional on \( M_2(\mathbb{R}) \), called the Trace. More generally,
Transcribed Image Text:### 1. Linear Functionals **Definition 1.1.** Let \( V \) be a vector space over \( \mathbb{R} \). A linear functional on \( V \) is a linear map \( \varphi : V \to \mathbb{R} \). **Examples:** 1. **Example 1:** Consider \( V = \mathbb{R}^n \), and \( \varphi : \mathbb{R}^n \to \mathbb{R} \) given by \( \varphi(\vec{v}) = x_1 + \cdots + x_n \), where \( \vec{v} = (x_1, x_2, \cdots, x_n) \). Then \( \varphi \) is a linear functional. The next proposition provides a more general example of a linear functional on \( \mathbb{R}^n \). **Proposition 1.2.** Let \( a_1, a_2, \cdots, a_n \) be fixed real numbers. Let \( \varphi : \mathbb{R}^n \to \mathbb{R} \) be given by \( \varphi(\vec{v}) = a_1x_1 + a_2x_2 + \cdots + a_n x_n \), where \( \vec{v} = (x_1, x_2, \cdots, x_n) \). Then \( \varphi \) is a linear functional. - **Project Problem 1:** Prove the above Proposition 1.2. 2. **Example 2:** Consider \( V = M_2(\mathbb{R}) \), where \( M_2(\mathbb{R}) \) denotes the set of all \( 2 \times 2 \) matrices with real entries. Let \( \operatorname{Tr} : M_2(\mathbb{R}) \to \mathbb{R} \) be given by \( \operatorname{Tr}\left[\begin{matrix} a & b \\ c & d \end{matrix}\right] = a + d \). Then \( \operatorname{Tr} \) is a linear functional on \( M_2(\mathbb{R}) \), called the Trace. More generally,
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,