The Nero Match Company sells matchboxes that are supposed to have an average of 40 matches per box, with σ = 7. A random sample of 92 matchboxes shows the average number of matches per box to be 42.0. Using a 1% level of significance, can you say that the average number of matches per box is more than 40? What are we testing in this problem? single proportion single mean (a) What is the level of significance? State the null and alternate hypotheses. H0: μ = 40; H1: μ ≠ 40 H0: p = 40; H1: p ≠ 40 H0: p = 40; H1: p > 40 H0: μ = 40; H1: μ > 40 H0: p = 40; H1: p < 40 H0: μ = 40; H1: μ < 40 (b) What sampling distribution will you use? What assumptions are you making? The Student's t, since we assume that x has a normal distribution with unknown σ. The standard normal, since we assume that x has a normal distribution with known σ. The standard normal, since we assume that x has a normal distribution with unknown σ. The Student's t, since we assume that x has a normal distribution with known σ. What is the value of the sample test statistic? (Round your answer to two decimal places.) (c) Find (or estimate) the P-value. P-value > 0.250 0.125 < P-value < 0.250 0.050 < P-value < 0.125 0.025 < P-value < 0.050 0.005 < P-value < 0.025 P-value < 0.005 Sketch the sampling distribution and show the area corresponding to the P-value. (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant. At the α = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) Interpret your conclusion in the context of the application. There is sufficient evidence at the 0.01 level to conclude that the average number of matches per box is now greater than 40. There is insufficient evidence at the 0.01 level to conclude that the average number of matches per box is now greater than 40.
The Nero Match Company sells matchboxes that are supposed to have an average of 40 matches per box, with σ = 7. A random sample of 92 matchboxes shows the average number of matches per box to be 42.0. Using a 1% level of significance, can you say that the average number of matches per box is more than 40? What are we testing in this problem? single proportion single mean (a) What is the level of significance? State the null and alternate hypotheses. H0: μ = 40; H1: μ ≠ 40 H0: p = 40; H1: p ≠ 40 H0: p = 40; H1: p > 40 H0: μ = 40; H1: μ > 40 H0: p = 40; H1: p < 40 H0: μ = 40; H1: μ < 40 (b) What sampling distribution will you use? What assumptions are you making? The Student's t, since we assume that x has a normal distribution with unknown σ. The standard normal, since we assume that x has a normal distribution with known σ. The standard normal, since we assume that x has a normal distribution with unknown σ. The Student's t, since we assume that x has a normal distribution with known σ. What is the value of the sample test statistic? (Round your answer to two decimal places.) (c) Find (or estimate) the P-value. P-value > 0.250 0.125 < P-value < 0.250 0.050 < P-value < 0.125 0.025 < P-value < 0.050 0.005 < P-value < 0.025 P-value < 0.005 Sketch the sampling distribution and show the area corresponding to the P-value. (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant. At the α = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) Interpret your conclusion in the context of the application. There is sufficient evidence at the 0.01 level to conclude that the average number of matches per box is now greater than 40. There is insufficient evidence at the 0.01 level to conclude that the average number of matches per box is now greater than 40.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Topic Video
Question
The Nero Match Company sells matchboxes that are supposed to have an average of 40 matches per box, with σ = 7. A random sample of 92 matchboxes shows the average number of matches per box to be 42.0. Using a 1% level of significance, can you say that the average number of matches per box is more than 40?
What are we testing in this problem?
single proportion
single mean
(a) What is the level of significance?
State the null and alternate hypotheses.
(b) What sampling distribution will you use? What assumptions are you making?
What is the value of the sample test statistic? (Round your answer to two decimal places.)
(c) Find (or estimate) the P-value.
Sketch the sampling distribution and show the area corresponding to the P-value.
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α?
(e) Interpret your conclusion in the context of the application.
State the null and alternate hypotheses.
H0: μ = 40; H1: μ ≠ 40
H0: p = 40; H1: p ≠ 40
H0: p = 40; H1: p > 40
H0: μ = 40; H1: μ > 40
H0: p = 40; H1: p < 40
H0: μ = 40; H1: μ < 40
(b) What sampling distribution will you use? What assumptions are you making?
The Student's t, since we assume that x has a normal distribution with unknown σ.
The standard normal, since we assume that x has a normal distribution with known σ.
The standard normal, since we assume that x has a normal distribution with unknown σ.
The Student's t, since we assume that x has a normal distribution with known σ.
What is the value of the sample test statistic? (Round your answer to two decimal places.)
(c) Find (or estimate) the P-value.
P-value > 0.250
0.125 < P-value < 0.250
0.050 < P-value < 0.125
0.025 < P-value < 0.050
0.005 < P-value < 0.025
P-value < 0.005
Sketch the sampling distribution and show the area corresponding to the P-value.
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α?
At the α = 0.01 level, we reject the null hypothesis and conclude the data are statistically significant.
At the α = 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant.
At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the α = 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
(e) Interpret your conclusion in the context of the application.
There is sufficient evidence at the 0.01 level to conclude that the average number of matches per box is now greater than 40.
There is insufficient evidence at the 0.01 level to conclude that the average number of matches per box is now greater than 40.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman