The mean time between failures (MTBF) is a common metric used to measure the performance of manufacturing systems. MTBF is the elapsed time between failures of a system during normal operations. The failures could be caused by broken machines or computer errors, among other failures. Suppose that the MTBF for a new automated manufacturing system follows an exponential distribution with a mean of 12.4 hours. (a) What is the probability that the automated manufacturing system runs for more than 17 hours without a failure? (b) What is the probability that the automated manufacturing system runs for 9 or fewer hours before failure? (c) What is the probability that the automated manufacturing system runs for more than 5 hours but less than 11 hours before a failure?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images