The maximum rate I at which oxygen molecules can be consumed by a bacterium or radius R in a lake where the concentration of oxygen is co = 0.2 mole m-³ increases with the first power of R. We might expect the oxygen consumption, however, to increase roughly with an organism's volume. Together, this statements imply an upper limit to the size of a bacterium: If R gets too large, the bacterium would literally suffocate. The actual metabolic activity of a bacterium is about 0.02 mole kg' s'. What limit do you then get on the size R of a bacterium? Compare to the size of a real bacteria. Can you think of some way for a bacterium to evade this limit?
The maximum rate I at which oxygen molecules can be consumed by a bacterium or radius R in a lake where the concentration of oxygen is co = 0.2 mole m-³ increases with the first power of R. We might expect the oxygen consumption, however, to increase roughly with an organism's volume. Together, this statements imply an upper limit to the size of a bacterium: If R gets too large, the bacterium would literally suffocate. The actual metabolic activity of a bacterium is about 0.02 mole kg' s'. What limit do you then get on the size R of a bacterium? Compare to the size of a real bacteria. Can you think of some way for a bacterium to evade this limit?
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
1

Transcribed Image Text:The maximum rate I at which oxygen molecules can be consumed by a bacterium or
radius R in a lake where the concentration of oxygen is co = 0.2 mole m³ increases
with the first power of R. We might expect the oxygen consumption, however, to
increase roughly with an organism's volume. Together, this statements imply an upper
limit to the size of a bacterium: If R gets too large, the bacterium would literally
suffocate. The actual metabolic activity of a bacterium is about 0.02 mole kg-' sl.
What limit do you then get on the size R of a bacterium? Compare to the size of a real
bacteria. Can you think of some way for a bacterium to evade this limit?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY