Ionic Equilibrium
Chemical equilibrium and ionic equilibrium are two major concepts in chemistry. Ionic equilibrium deals with the equilibrium involved in an ionization process while chemical equilibrium deals with the equilibrium during a chemical change. Ionic equilibrium is established between the ions and unionized species in a system. Understanding the concept of ionic equilibrium is very important to answer the questions related to certain chemical reactions in chemistry.
Arrhenius Acid
Arrhenius acid act as a good electrolyte as it dissociates to its respective ions in the aqueous solutions. Keeping it similar to the general acid properties, Arrhenius acid also neutralizes bases and turns litmus paper into red.
Bronsted Lowry Base In Inorganic Chemistry
Bronsted-Lowry base in inorganic chemistry is any chemical substance that can accept a proton from the other chemical substance it is reacting with.
The maximum amount of magnesium carbonate that will dissolve in a 0.261 M potassium carbonate solution is _____ M. (Ksp = 4.0 x 10-5)
The attached photo is an example of how to solve the problem
![The maximum amount of silver carbonate that will dissolve in a 0.125 M ammonium carbonate
solution is
x M.
Incorrect
(NH4)2CO3 is a soluble salt, Ag,CO3 is not.
The solubility of Ag2CO3 in pure water is 1.3×10-4 M. The amount of silver carbonate that can
dissolve in a solution of ammonium carbonate is less than in plain water, because there is already
carbonate ion present in the solution. This is known as the "Common Ion Effect".
Initial [CO3?-] = 0.125 M from the (NH4)2CO3 solution.
Step 1: Set up the equilibrium using the ICE method
Let 's'= number of moles of Ag2CO3 (s) per liter that dissolves.
Ag2CO3 (s) = 2Ag+ (aq) +
Co32 (aq)
Initial
some
0.125 M
Change
Equilibrium
+ 2s
+ s
some
+ 2s
0.125 +s
Setp 21 Substitute the equilibrium values into the Ksp expression
Previous
Next](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0a4e7880-3731-4736-9087-0e959d4f3aa8%2F19708354-e6b6-4d1b-93d7-a262b71b958e%2Fam4g5vj_processed.jpeg&w=3840&q=75)
![Setp 2: Substitute the equilibrium values into the Ksp expression
Ksp =[Ag*]2 [CO,²] =(2s)²(0.125 + s) = 8.1×10-12 (from the table)
%3D
%3D
Step 3: Assume that s is small relative to 0.125 M, so that the approximation 0.125 + s. 0.125 can
be made. This is reasonable because the solubility is low without the common ion and it will be even
lower in the presense of added CO3²-. Then:
Ksp = (2s)2(0.125) = 8.1×10-12
%3D
Step 4: Solve for s
8.1x10 12
(1/2)
= (1/2)
= 4.0×10-6 M
(0.125)
Step 5: Check the approximation:
0.125 +s = 0.125 + (4.0×10 6)
0.125
0.125
OK
%3D](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0a4e7880-3731-4736-9087-0e959d4f3aa8%2F19708354-e6b6-4d1b-93d7-a262b71b958e%2F7xkukeg_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Chemistry](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Principles of Instrumental Analysis](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Organic Chemistry](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Chemistry: Principles and Reactions](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)