The manager of a pizza chain in Albuquerque, New Mexico, wants to determine the average size of their advertised 16-inch pizzas. She takes a random sample of 25 pizzas and records their mean and standard deviation as 16.10 inches and 1.8 inches, respectively. She subsequently computes the 95% confidence interval of the mean size of all pizzas as [15.36, 16.84]. However, she finds this interval to be too broad to implement quality control and decides to reestimate the mean based on a bigger sample. Using the standard deviation estimate of 1.8 from her earlier analysis, how large a sample must she take if she wants the margin of error to be under 0.5 inch? Use Table 1. (Round intermediate calculations to 4 decimal places. Round "z-value" to 2 decimal places. Round up your answer to the nearest whole number.) Sample size
The manager of a pizza chain in Albuquerque, New Mexico, wants to determine the average size of their advertised 16-inch pizzas. She takes a random sample of 25 pizzas and records their mean and standard deviation as 16.10 inches and 1.8 inches, respectively. She subsequently computes the 95% confidence interval of the mean size of all pizzas as [15.36, 16.84]. However, she finds this interval to be too broad to implement quality control and decides to reestimate the mean based on a bigger sample. Using the standard deviation estimate of 1.8 from her earlier analysis, how large a sample must she take if she wants the margin of error to be under 0.5 inch? Use Table 1. (Round intermediate calculations to 4 decimal places. Round "z-value" to 2 decimal places. Round up your answer to the nearest whole number.) Sample size
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Please help me don't do handwritten please explain concept and stepwise, i will definitely like the answer... Do using table only or skip please .
![The manager of a pizza chain in Albuquerque, New Mexico, wants to determine the average size of their
advertised 16-inch pizzas. She takes a random sample of 25 pizzas and records their mean and standard
deviation as 16.10 inches and 1.8 inches, respectively. She subsequently computes the 95% confidence
interval of the mean size of all pizzas as [15.36, 16.84]. However, she finds this interval to be too broad to
implement quality control and decides to reestimate the mean based on a bigger sample. Using the
standard deviation estimate of 1.8 from her earlier analysis, how large a sample must she take if she wants
the margin of error to be under 0.5 inch? Use Table 1. (Round intermediate calculations to 4 decimal
places. Round "z-value" to 2 decimal places. Round up your answer to the nearest whole number.)
Sample size](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffe504a2c-a20b-42ab-89e1-ffcd1d24ffca%2F5e5c1ff0-6860-4acb-8afb-1440c61f3214%2Fp4v0wys_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The manager of a pizza chain in Albuquerque, New Mexico, wants to determine the average size of their
advertised 16-inch pizzas. She takes a random sample of 25 pizzas and records their mean and standard
deviation as 16.10 inches and 1.8 inches, respectively. She subsequently computes the 95% confidence
interval of the mean size of all pizzas as [15.36, 16.84]. However, she finds this interval to be too broad to
implement quality control and decides to reestimate the mean based on a bigger sample. Using the
standard deviation estimate of 1.8 from her earlier analysis, how large a sample must she take if she wants
the margin of error to be under 0.5 inch? Use Table 1. (Round intermediate calculations to 4 decimal
places. Round "z-value" to 2 decimal places. Round up your answer to the nearest whole number.)
Sample size

Transcribed Image Text:TABLE 1 Standard Normal Curve Areas
Entries in this table provide cumulative probabilities, that is, the area under
the curve to the left of -2. For example, P(Z <-1.52) = 0.0643.
Z
-3.9
-3.8
-3.7
-3.6
-3.5
-3.4
-3.3
-3.2
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
-0.0
0.00
0.0000
0.0001
0.0001
0.0002
0.0002
0.0002 0.0002
0.0003
0.0005
0.0007 0.0007
0.0009
0.0013
0.0010
0.0013
0.0287
0.0281
0.0359 0.0351
0.01
0.02
0.0000
0.0000
0.0001
0.0001
0.0001 0.0001
0.1357
0.1587
0.0019
0.0018
0.0018
0.0026 0.0025 0.0024 0.0023
0.0035
0.0034 0.0033 0.0032
0.0044 0.0043
0.0047
0.0045
0.0040
0.0041
0.0055 0.0054
0.0062
0.0060
0.0059 0.0057
0.0082
0.0080 0.0078 0.0075 0.0073 0.0071
0.0107 0.0104 0.0102 0.0099 0.0096
0.0139 0.0136 0.0132
0.0125
0.0179 0.0174 0.0170 0.0166 0.0162
0.0129
0.0228
0.0222
0.0217
0.0212
0.0207 0.0202
0.0968 0.0951
0.1151 0.1131
0.1841
0.2119
0.2420
0.0003 0.0003 0.0003
0.0004
0.0006 0.0006
0.0005 0.0005
0.0009
0.0013
0.2743
0.3085
0.3446
0.3821
0.0274
0.0344 0.0336
0.0446 0.0436 0.0427 0.0418
0.0548
0.0537
0.0526
0.0516
0.0668
0.0655
0.0808 0.0793
-Z
0
0.03
0.05
0.06
0.07
0.08
0.04
0.0000
0.0000
0.0000 0.0000
0.0000
0.0000
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001 0.0001 0.0001
0.0001
0.0003
0.0001 0.0001 0.0001
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
0.0003 0.0003 0.0003 0.0003
0.0004 0.0004 0.0004
0.0006 0.0006 0.0006
0.0008 0.0008
0.0008
0.0012 0.0011 0.0011 0.0011
0.0004 0.0004
0.0005 0.0005
0.0008 0.0007
0.0010
0.1335
0.1562
0.0009
0.0012
0.3409
0.3783
0.0017 0.0016
0.0023
0.0031
0.0268 0.0262
0.0329
0.0409
0.0505
0.0618
0.0749
0.4207
0.4168
0.4129
0.4602 0.4562 0.4522
0.5000
0.4960
0.4920
SOURCE: Probabilities calculated with Excel
0.0643
0.0630
0.0778 0.0764
0.0934 0.0918
0.1112
0.1093
0.1314
0.1292
0.1539
0.1515 0.1492
0.1814 0.1788
0.1762
0.2090 0.2061 0.2033
0.2389 0.2358 0.2327
0.2709 0.2676
0.2643
0.3050
0.3015
0.2981
0.3372
0.3336
0.3745
0.3707
0.4090
0.4483
0.4880
0.1736
0.2005
0.2296
0.2611
0.2946
0.3300
0.3669
0.4052
0.4443
0.4840
P(Z = -2)
0.0016
0.0015
0.0022
0.0021
0.0030 0.0029
0.0039
0.0052
0.0069
0.0094 0.0091
0.0122 0.0119
0.0001
0.0001
0.0158 0.0154 0.0150
0.0197
0.0192
0.0901
0.0885 0.0869
0.1075
0.1056
0.1038
0.1271 0.1251
0.1469
0.0256
0.0322
0.0401
0.0495
0.0606
0.0594
0.0735 0.0721
0.2912
0.3264
0.3632
0.4013
0.4404
0.4801
0.1711
0.1685
0.1977
0.1949
0.2266 0.2236
0.2578
0.2546
0.1230
0.1446
0.0015 0.0014
0.0021
0.0028
0.0038
0.0051
0.0068
0.0089
0.0116
0.0250
0.0244
0.0239
0.0314 0.0307
0.0301
0.0392 0.0384
0.0375
0.0485 0.0475
0.0465
0.0582
0.0571
0.0708
0.0694
0.0853
0.0838 0.0823
0.1020
0.1003
0.0985
0.1210
0.1190
0.1170
0.1423 0.1401
0.1379
0.2877
0.3228
0.3594
0.3974
0.4364
0.4761
0.0020
0.0027
0.0037
0.0049
0.0066
0.0087
0.0113
0.0146
0.0188
0.3936
0.4325
0.4721
0.1660 0.1635
0.1922
0.1894
0.2206
0.2177
0.2514
0.2483
0.2843 0.2810
0.3192 0.3156
0.3557
0.3520
0.09
0.0000
0.0001
0.0001
0.0001
0.0002
0.0002
0.0003
0.0005
0.0007
0.0010
0.3897
0.4286
0.4681
0.0014
0.0019
0.0026
0.0036
0.0048
0.0064
0.0084
0.0110
0.0143
0.0183
0.0233
0.0294
0.0367
0.0455
0.0559
0.0681
0.1611
0.1867
0.2148
0.2451
0.2776
0.3121
0.3483
0.3859
0.4247
0.4641
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 1 images

Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman