The main objective of this project is to find frequent itemsets by implementing two efficient algorithms: A-Priori and PCY. The goal is to find frequent pairs of elements. You do not need to find triples and larger itemsets.
Use C Language Please. I will give you thumb up if you follow all reqirement. Thank you!(this is the all information i have, so please do it base on the dataset)
Description
The main objective of this project is to find frequent itemsets by implementing two efficient
You have to use C programming language.
Dataset link: It is available
Dataset
The retail dataset contains anonymized retail market basket data (88K baskets) from an anonymous retail store. The preprocessing step to map text labels into integers has already been done. Use Sublime Text, TextPad or Notepad++ or other software to open the file. Do not use Notepad.
Experiments
• Perform the scalability study for finding frequent pairs of elements by dividing the dataset into different chunks and measure the time performance. Provide the line chart. Provide results for the following support thresholds: 1%, 5%, 10%. For example, if your chunk is 10% of the dataset, you have around 8,800 baskets. Therefore, if your support threshold is 5%, you should count the pairs that appear in at least 440 baskets. See three samples below for three different support thresholds.
Note: the following sample charts contain hypothetical numbers!
• Implement Multistage (3 Passes) version of PCY, using one extra hash table. (add the results to the line chart)
• Implement Multihash version of PCY, using one extra hash table. (add the results to the line chart)
Here are a few lines from the retail.txt file
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 31 32
33 34 35
36 37 38 39 40 41 42 43 44 45 46
38 39 47 48
38 39 48 49 50 51 52 53 54 55 56 57 58
32 41 59 60 61 62
3 39 48
63 64 65 66 67 68
32 69
48 70 71 72
39 73 74 75 76 77 78 79
36 38 39 41 48 79 80 81
82 83 84
41 85 86 87 88
39 48 89 90 91 92 93 94 95 96 97 98 99 100 101
36 38 39 48 89
39 41 102 103 104 105 106 107 108
38 39 41 109 110
39 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
48 134 135 136
39 48 137 138 139 140 141 142 143 144 145 146 147 148 149
39 150 151 152
38 39 56 153 154 155
48 156 157 158 159 160
39 41 48
161 162 163 164 165 166 167
38 39 48 168 169 170 171 172 173
32 39 41 48 174 175 176 177 178
32 38 39 47 48 179 180 181 182 183
39 184 185 186
36 38 41 48 140 187 188
39 48 186 189 190 191 192 193 194 195 196 197 198 199 200
39 201 202 203 204 205 206 207 208 209
39 65 193 210 211 212 213 214 215
179 216 217 218 219 220 221 222 223 224
225 226 227
39 41 48 228 229 230 231
36 38 39 232 233 234 235 236 237 238 239 240 241 242
39 243 244 245
39 41 48 246 247 248 249 250
39 48 65 251 252 253
48 230 254
39 48 66 78 242 255 256 257 258 259 260 261
39 48 262
36 38 39 225 263 264 265 266 267
39 242 268 269 270 271
39 48 79 146 237 256 272 273
274
32 38 39 48 275 276 277 278 279 280 281 282 283
39 48 68
38 39 48 95 96 105 284 285 286 287
39 41 48 212 288 289 290 291 292 293 294 295 296 297 298 299
300 301 302
36 38 39 105 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
10 322 323 324 325 326 327
39 48 152 161 328
39 329 330
48 331 332 333 334 335 336 337 338 339
18 37 38 41 48 147 340 341 342 343 344 345 346 347
32 39 41 48 348 349 350
48 351 352 353 354 355 356 357 358 359 360 361 362 363 364
365 366
38 39 41 48 60 367 368 369 370 371 372 373 374 375
1 11 39 41 48 65 89 376 377 378 379 380 381 382 383 384 385
386 387 388 389
38 41 390
38 55 391
32 43 151 152 201 258 340 392 393 394 395 396 397 398 399
338 400 401 402 403 404
39 405 406 407
48 89 101 179 186 258 340 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
39 45 48 248 423 424 425 426
141 344 427 428 429 430 431
39 432 433 434
39 48 65 435 436 437 438
15 23 36 38 48 123 229 291 331 337 390 439 440 441 442 443 444 445 446 447 448 449 450
48 451 452 453 454 455 456 457 458 459 460
37 38 48 147 174 461 462 463 464 465 466 467 468 469 470 471
39 48 472 473 474 475
39 41 476
477 478 479
39 161 480 481 482 483 484 485 486
32 39 41 48 152 237 396
38 39 41 105 110 487
60 381
11 39 48 255 488 489 490 491 492 493 494 495 496 497 498 499 500
39
41 110 501
32 38 39 48 170 178 502 503
38 41 504
225 232 347 505 506 507 508 509 510 511 512 513 514 515
38 39 41 48 170 189 225 270 516
39 48
38 39 281 517
2 518 519 520
310 521 522
41 523 524
48 310 416 521 522 525 526 527 528 529 530 531
38 39 110 532
18 38 47 48 89 258 293 338 365 533 534 535 536 537 538 539 540 541 542 543 544
39 48 106 107 264 308 384 498 545 546 547 548 549
39 48 312 550 551 552 553 554 555 556 557 558
32 39 41 48 89 129 255 357 367 368 408 491 552 559 560 561 562 563 564 565 566 567 568 569 570
38 170 201 571
39 41 48 572 573 574 575
38 39 161 281
36 38 48 78 155 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
39 48 592 593 594 595 596 597 598 599 600
39 178 601 602
38 39 170 207 603 604 605 606
Step by step
Solved in 2 steps with 1 images