the llowing about the graph of rational functi T(X), determine whic of the following could be the function. x-intercept (,0) y-intercept (0, 1) Vertical Asymptote : x = = 1 Horizontal Asymptote : y = 3 Hole: (3,4) f(x) = O f (x) - O f(x) = f(x) = (3x-1)(x-3) (x-3)(x-1) (3x-1)(x-3) (x-3) (3x-1) (3x-1) (x+3) (x+3)(x-1) (3x+1)(x-3) (x-3)(x-1)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Given the following information about the graph of rational function \( f(x) \), determine which of the following could be the function.

- \( x\text{-intercept} \left( \frac{1}{3}, 0 \right) \)
- \( y\text{-intercept} (0, 1) \)
- \( \text{Vertical Asymptote} : x = 1 \)
- \( \text{Horizontal Asymptote} : y = 3 \)
- \( \text{Hole} : (3, 4) \)

### Function Options:
1. \( \bigcirc \) \( f(x) = \frac{(3x-1)(x-3)}{(x-3)(x-1)} \)
2. \( \bigcirc \) \( f(x) = \frac{(3x-1)(x-3)}{(x-3)(3x-1)} \)
3. \( \bigcirc \) \( f(x) = \frac{(3x-1)(x+3)}{(x+3)(x-1)} \)
4. \( \bigcirc \) \( f(x) = \frac{(3x+1)(x-3)}{(x-3)(x-1)} \)

The correct answer, highlighted with a filled circle, is:

1. \( \bigodot \) \( f(x) = \frac{(3x-1)(x-3)}{(x-3)(x-1)} \)
Transcribed Image Text:Given the following information about the graph of rational function \( f(x) \), determine which of the following could be the function. - \( x\text{-intercept} \left( \frac{1}{3}, 0 \right) \) - \( y\text{-intercept} (0, 1) \) - \( \text{Vertical Asymptote} : x = 1 \) - \( \text{Horizontal Asymptote} : y = 3 \) - \( \text{Hole} : (3, 4) \) ### Function Options: 1. \( \bigcirc \) \( f(x) = \frac{(3x-1)(x-3)}{(x-3)(x-1)} \) 2. \( \bigcirc \) \( f(x) = \frac{(3x-1)(x-3)}{(x-3)(3x-1)} \) 3. \( \bigcirc \) \( f(x) = \frac{(3x-1)(x+3)}{(x+3)(x-1)} \) 4. \( \bigcirc \) \( f(x) = \frac{(3x+1)(x-3)}{(x-3)(x-1)} \) The correct answer, highlighted with a filled circle, is: 1. \( \bigodot \) \( f(x) = \frac{(3x-1)(x-3)}{(x-3)(x-1)} \)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning