The linear transformation T: R" → RM is defined by T(v) = Av, where A is as follows. 0 1 -9 1 A = -1 6 7 0 0 1 5 1 (a) Find T(3, 0, 1, 2). STEP 1: Use the definition of T to write a matrix equation for T(3, 0, 1, 2). Т(3, о, 1, 2) %3D STEP 2: Use your result from Step 1 to solve for T(3, 0, 1, 2). T(3, 0, 1, 2) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

(Linear Algebra)

4.

6.1

Pls help thanks

**(b) Find the preimage of (0, 0, 0).**

**STEP 1:** The preimage of (0, 0, 0) is determined by solving the following equation.

\[ 
T(w, x, y, z) = 
\begin{bmatrix}
0 & 1 & -9 & 1 \\
-1 & 6 & 7 & 0 \\
0 & 1 & 5 & 1 
\end{bmatrix}
\begin{bmatrix}
w \\
x \\
y \\
z 
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 
\end{bmatrix}
\]

Let \( t \) be any real number. Set \( z = t \) and solve for \( w, x, \) and \( y \) in terms of \( t \).

- \( w = \) [input box]
- \( x = \) [input box]
- \( y = \) [input box]
- \( z = t \)

**STEP 2:** Use your result from Step 1 to find the preimage of (0, 0, 0). (Enter each vector as a comma-separated list of its components.)

The preimage is given by the set of vectors \(\{(\text{[input box]}) : t \text{ is any real number}\}\).
Transcribed Image Text:**(b) Find the preimage of (0, 0, 0).** **STEP 1:** The preimage of (0, 0, 0) is determined by solving the following equation. \[ T(w, x, y, z) = \begin{bmatrix} 0 & 1 & -9 & 1 \\ -1 & 6 & 7 & 0 \\ 0 & 1 & 5 & 1 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] Let \( t \) be any real number. Set \( z = t \) and solve for \( w, x, \) and \( y \) in terms of \( t \). - \( w = \) [input box] - \( x = \) [input box] - \( y = \) [input box] - \( z = t \) **STEP 2:** Use your result from Step 1 to find the preimage of (0, 0, 0). (Enter each vector as a comma-separated list of its components.) The preimage is given by the set of vectors \(\{(\text{[input box]}) : t \text{ is any real number}\}\).
The linear transformation \( T: \mathbb{R}^n \to \mathbb{R}^m \) is defined by \( T(\mathbf{v}) = A\mathbf{v} \), where \( A \) is as follows.

\[ 
A = \begin{bmatrix} 
0 & 1 & -9 & 1 \\
-1 & 6 & 7 & 0 \\
0 & 1 & 5 & 1 
\end{bmatrix} 
\]

(a) Find \( T(3, 0, 1, 2) \).

**STEP 1:** Use the definition of \( T \) to write a matrix equation for \( T(3, 0, 1, 2) \).

\[
T(3, 0, 1, 2) = 
\begin{bmatrix} 
& & & \\ 
& & & \\ 
& & & 
\end{bmatrix} 
\cdot 
\begin{bmatrix} 
\\ 
\\ 
\\ 
\end{bmatrix}
\]

**STEP 2:** Use your result from Step 1 to solve for \( T(3, 0, 1, 2) \).

\[
T(3, 0, 1, 2) = 
\begin{bmatrix} 
\\ 
\\ 
\end{bmatrix} 
\]
Transcribed Image Text:The linear transformation \( T: \mathbb{R}^n \to \mathbb{R}^m \) is defined by \( T(\mathbf{v}) = A\mathbf{v} \), where \( A \) is as follows. \[ A = \begin{bmatrix} 0 & 1 & -9 & 1 \\ -1 & 6 & 7 & 0 \\ 0 & 1 & 5 & 1 \end{bmatrix} \] (a) Find \( T(3, 0, 1, 2) \). **STEP 1:** Use the definition of \( T \) to write a matrix equation for \( T(3, 0, 1, 2) \). \[ T(3, 0, 1, 2) = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \cdot \begin{bmatrix} \\ \\ \\ \end{bmatrix} \] **STEP 2:** Use your result from Step 1 to solve for \( T(3, 0, 1, 2) \). \[ T(3, 0, 1, 2) = \begin{bmatrix} \\ \\ \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,