The joint distribution function ofX and Y random variables is given below: F„(z, 9) = {(1-e)(1- e ) ,z20, y 2 0, a 2 0, 8 2 0, ,otherwise. Find the marginal function of X and Y random variables. F.(z) = {(-e) ,z20,a 2 0, ,otherwise. F,(9) = { (1-e) y20,820, ,otherwise. Ob. F,(e) = {C= Į (0.5 – e ) (2 – e =) ,22 0, a 2 0, ,otherwise. „y2 0,5 2 0, ,otherwise. F,(6) = Į (1-e ) ,zy 2 0, a 2 0, ,otherwise. F_(z) = { (1– e A) ,zy 2 0, 8 2 0, otherwise. F,(y) = "F,(=) = {(1 -e) ,z2 0, a 2 0, ,otherwise. F,(9) = {a-e*) y20,820, ,otherwise. Oe. F,(z) = | (1 – e A*) ,22 0,5 2 0, ,otherwise. F,(2) = {a S (1– e „y 2 0, a 2 0, , otherwise.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
100%

Probability;

The joint distribution function of X and Y random variables is given below:

Find the marginal function of X and Y random variables.

The joint distribution function of X and Y random variables is given below:
F„(1, y) = {-
( (1 – e a=)(1– e ) ,z20,y20,a > 0, B 2 0,
, otherwise.
Find the marginal function of X and Y random variables.
Oa.
,12 0,a 2 0,
F,(z) =
,otherwise.
F, (2) = { (a - e ) v2 0,82 0,
, otherwise.
Ob.
Į (2 – e ")
,z2 0, a 2 0,
,otherwise.
F_(z) =
S (0.5 – e A*)
y2 0, B 2 0,
,otherwise.
%3D
F, (z) = {(1-e any)
,zy 2 0, a 2 0,
,otherwise.
F,(1) = {C"
, 피2 0,820,
otherwise.
%3D
o d. F,(z) =
S (1 – e )
,z 2 0, a 2 0,
,otherwise.
{ (1 – e A)
„Y 2 0, B 2 0,
,otherwise.
F,(4) =
Oe.
[ (1– e A*)
,I2 0, B 2 0,
,otherwise.
F,(z) =
,y2 0,α > 0,
,otherwise.
-e ay)
F,(1) = {
%3D
Transcribed Image Text:The joint distribution function of X and Y random variables is given below: F„(1, y) = {- ( (1 – e a=)(1– e ) ,z20,y20,a > 0, B 2 0, , otherwise. Find the marginal function of X and Y random variables. Oa. ,12 0,a 2 0, F,(z) = ,otherwise. F, (2) = { (a - e ) v2 0,82 0, , otherwise. Ob. Į (2 – e ") ,z2 0, a 2 0, ,otherwise. F_(z) = S (0.5 – e A*) y2 0, B 2 0, ,otherwise. %3D F, (z) = {(1-e any) ,zy 2 0, a 2 0, ,otherwise. F,(1) = {C" , 피2 0,820, otherwise. %3D o d. F,(z) = S (1 – e ) ,z 2 0, a 2 0, ,otherwise. { (1 – e A) „Y 2 0, B 2 0, ,otherwise. F,(4) = Oe. [ (1– e A*) ,I2 0, B 2 0, ,otherwise. F,(z) = ,y2 0,α > 0, ,otherwise. -e ay) F,(1) = { %3D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Multivariate Distributions and Functions of Random Variables
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON