the inverse of the following matrix. 1 1 1 1 1 0-1 0 2 100 0 -1 12 22. 23. 1 1 1 0-1 20 100 -1 2 0 24. 1 1 1 1 1 100 0-10 2 -1 1 2 0 /000

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

22-24 please

 

Problem II Find the inverse of the following matrix.
1 1 1 1
1 1 1
1
0
0-1 21
1 100
0-1 02
100
1
0
-1 2 0
1 2
0
21.
25.
29.
33.
37.
1 1 1
100
020 -1
021 -1
1
2 1 1 2
1 12 1
0011
0012
1 1 0 0
1210
0121
00 2
−1 1 3 0
1 001
1002
250
22.
26.
30.
34.
38.
1 1 1
110
100
1000
2
1 1 2
1 2 1 1
1 1 0 0
2100
2 1 0 0
12 10
0121
0 01 1
013
100 1
100 2
025-1
23.
27.
31.
35.
39.
1 1 1
-1 2 0
100
-1 2 1
100
1 100
1 1 1 0
1 1 1
2 1 0
1 100
1 2 1 1
2 1 1 2
0 0 1 1
0121
1210
2100
0 1 1
100 3
200 5
012 −1
24.
28.
32.
36.
40.
1
1
0
0
1 1 1
100
-1 0 2
-1 1 2
0001
0 0 1
1
0 1 1
1
1 1 1 1
0 0 1
0 0 1
1 1 2
2 112
2)
1
1
0 0 1 2)
0121
1210
1 00
-1 1 1 0
1003
2005
-1 1 2 0
Transcribed Image Text:Problem II Find the inverse of the following matrix. 1 1 1 1 1 1 1 1 0 0-1 21 1 100 0-1 02 100 1 0 -1 2 0 1 2 0 21. 25. 29. 33. 37. 1 1 1 100 020 -1 021 -1 1 2 1 1 2 1 12 1 0011 0012 1 1 0 0 1210 0121 00 2 −1 1 3 0 1 001 1002 250 22. 26. 30. 34. 38. 1 1 1 110 100 1000 2 1 1 2 1 2 1 1 1 1 0 0 2100 2 1 0 0 12 10 0121 0 01 1 013 100 1 100 2 025-1 23. 27. 31. 35. 39. 1 1 1 -1 2 0 100 -1 2 1 100 1 100 1 1 1 0 1 1 1 2 1 0 1 100 1 2 1 1 2 1 1 2 0 0 1 1 0121 1210 2100 0 1 1 100 3 200 5 012 −1 24. 28. 32. 36. 40. 1 1 0 0 1 1 1 100 -1 0 2 -1 1 2 0001 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 2 2 112 2) 1 1 0 0 1 2) 0121 1210 1 00 -1 1 1 0 1003 2005 -1 1 2 0
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,