The impeller of the centrifugal pump is 350 mm diameter, and the width of the blade passages at outlet is 18 mm.   A pump, which runs at 16.6 rev/s, is mounted so that its centre is 2.4 m above the water level in the suction sump.  It delivers water to a point 19 m above its centre; the friction loss in the suction pipe is 68 Q² meter and that in the delivery pipe is 650 Q² meter where Q in m3/s is the rate of flow.  The blades themselves occupy 5% of the circumference and are backward facing at 35° to the tangent.  At inlet, the flow is radial and the radial component of velocity remains unchanged through the impeller.  Assuming that 50% of the velocity head of the water leaving the impeller is converted to pressure head in the volute, and that friction and shock losses in the pump, the velocity heads in the suction and delivery pipes are negligible, calculate the following:The flow rate, m3/s, of the pump. Manometric efficiency, in %, of the pump.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

The impeller of the centrifugal pump is 350 mm diameter, and the width of the blade passages at outlet is 18 mm.   A pump, which runs at 16.6 rev/s, is mounted so that its centre is 2.4 m above the water level in the suction sump.  It delivers water to a point 19 m above its centre; the friction loss in the suction pipe is 68 Q² meter and that in the delivery pipe is 650 Q² meter where Q in m3/s is the rate of flow.  The blades themselves occupy 5% of the circumference and are backward facing at 35° to the tangent.  At inlet, the flow is radial and the radial component of velocity remains unchanged through the impeller.  Assuming that 50% of the velocity head of the water leaving the impeller is converted to pressure head in the volute, and that friction and shock losses in the pump, the velocity heads in the suction and delivery pipes are negligible, calculate the following:The flow rate, m3/s, of the pump. Manometric efficiency, in %, of the pump.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY