The hydrogen iodide (HI) molecule has equilibrium separation 0.160 nm and vibrational frequency 6.93 * 1013 Hz. The mass of a hydrogen atom is 1.67 * 10-27 kg, and the mass of an iodine atom is 2.11 * 10-25 kg. (a) Calculate the moment of inertia of HI about a perpendicular axis through its center of mass. (b) Calculate the wavelength of the photon emitted in each of the following vibration-rotation transitions: (i) n = 1, l = 1 S n = 0, l = 0; (ii) n = 1, l = 2 S n = 0, l = 1; (iii) n = 2, l = 2 S n = 1, l = 3.
The hydrogen iodide (HI) molecule has equilibrium separation 0.160 nm and vibrational frequency 6.93 * 1013 Hz. The mass of a hydrogen atom is 1.67 * 10-27 kg, and the mass of an iodine atom is 2.11 * 10-25 kg. (a) Calculate the moment of inertia of HI about a perpendicular axis through its center of mass. (b) Calculate the wavelength of the photon emitted in each of the following vibration-rotation transitions: (i) n = 1, l = 1 S n = 0, l = 0; (ii) n = 1, l = 2 S n = 0, l = 1; (iii) n = 2, l = 2 S n = 1, l = 3.
Related questions
Question
The hydrogen iodide (HI) molecule has equilibrium separation 0.160 nm and vibrational frequency 6.93 * 1013 Hz. The mass of a hydrogen atom is 1.67 * 10-27 kg, and the mass of an iodine atom is 2.11 * 10-25 kg. (a) Calculate the moment of inertia of HI about a perpendicular axis through its center of mass. (b) Calculate the wavelength of the photon emitted in each of the following vibration-rotation transitions: (i) n = 1, l = 1 S n = 0, l = 0; (ii) n = 1, l = 2 S n = 0, l = 1; (iii) n = 2, l = 2 S n = 1, l = 3.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps