The hot-water needs of a household are to be met by heating water at 55°F to 180°F by a parabolic solar collector at a rate of 4 lbm/s. Water flows through a 1.25-in-diameter thin aluminum tube whose outer surface is black-anodized in order to maximize its solar absorption ability. The centerline of the tube coincides with the focal line of the collector, and a glass sleeve is placed outside the tube to minimize the heat losses. If solar energy is transferred to water at a net rate of 400 Btu/h per ft length of the tube, determine the required length of the parabolic collector to meet the hot-water requirements of this house.
Compton effect
The incoming photons' energy must be in the range of an X-ray frequency to generate the Compton effect. The electron does not lose enough energy that reduces the wavelength of scattered photons towards the visible spectrum. As a result, with visible lights, the Compton effect is missing.
Recoil Velocity
The amount of backward thrust or force experienced by a person when he/she shoots a gun in the forward direction is called recoil velocity. This phenomenon always follows the law of conservation of linear momentum.
The hot-water needs of a household are to be met by
heating water at 55°F to 180°F by a parabolic solar collector
at a rate of 4 lbm/s. Water flows through a 1.25-in-diameter
thin aluminum tube whose outer surface is black-anodized in
order to maximize its solar absorption ability. The centerline
of the tube coincides with the focal line of the collector, and
a glass sleeve is placed outside the tube to minimize the heat
losses. If solar energy is transferred to water at a net rate of
400 Btu/h per ft length of the tube, determine the required
length of the parabolic collector to meet the hot-water
requirements of this house.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images