The helix of radius R, height h, and N complete turns has the parametrization Nt r(t) = (Rcos (2¹). R sin (2¹),1). ),₁). h h Calculate the length s of a helix if R = 3, h = 7, and N = 8. (Use symbolic notation and fractions where needed.) S= Incorrect 7√/1+ 0 ≤t≤h 1152 49
The helix of radius R, height h, and N complete turns has the parametrization Nt r(t) = (Rcos (2¹). R sin (2¹),1). ),₁). h h Calculate the length s of a helix if R = 3, h = 7, and N = 8. (Use symbolic notation and fractions where needed.) S= Incorrect 7√/1+ 0 ≤t≤h 1152 49
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
This is my only attempt
![### Understanding the Length of a Helix
The helix of radius \( R \), height \( h \), and \( N \) complete turns has the parametrization
\[
\mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right) , R \sin \left( \frac{2\pi Nt}{h} \right) , t \right\rangle , \quad 0 \leq t \leq h
\]
To calculate the length \( s \) of a helix if \( R = 3 \), \( h = 7 \), and \( N = 8 \), we follow the steps below. (Use symbolic notation and fractions where needed.)
The first calculation provided in the image is:
\[
s = 7 \sqrt{ 1 + \frac{1152\pi}{49} }
\]
However, the response indicates that the answer is incorrect.
To compute the correct length of the helix, let's break down the necessary steps:
1. **Parametrize the Helix Equation**
Given the parameterization of the helix:
\[
\mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right), R \sin \left( \frac{2\pi Nt}{h} \right), t \right\rangle
\]
where \( R = 3 \), \( h = 7 \), and \( N = 8 \).
2. **Calculate the Derivative**
Compute the derivative \( \mathbf{r}'(t) \):
\[
\mathbf{r}'(t) = \left\langle -R \frac{2\pi N}{h} \sin \left( \frac{2\pi Nt}{h} \right), R \frac{2\pi N}{h} \cos \left( \frac{2\pi Nt}{h} \right), 1 \right\rangle
= \left\langle -3 \frac{16\pi}{7} \sin \left( \frac{16\pi t}{7} \right), 3 \frac{16\pi}{7} \cos \left( \frac{16\pi t}{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F460d6b43-992c-4555-b09d-3f6791ba763b%2Ffbf643e4-805e-45a4-8926-f6e8750cd715%2Ffax93dd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Understanding the Length of a Helix
The helix of radius \( R \), height \( h \), and \( N \) complete turns has the parametrization
\[
\mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right) , R \sin \left( \frac{2\pi Nt}{h} \right) , t \right\rangle , \quad 0 \leq t \leq h
\]
To calculate the length \( s \) of a helix if \( R = 3 \), \( h = 7 \), and \( N = 8 \), we follow the steps below. (Use symbolic notation and fractions where needed.)
The first calculation provided in the image is:
\[
s = 7 \sqrt{ 1 + \frac{1152\pi}{49} }
\]
However, the response indicates that the answer is incorrect.
To compute the correct length of the helix, let's break down the necessary steps:
1. **Parametrize the Helix Equation**
Given the parameterization of the helix:
\[
\mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right), R \sin \left( \frac{2\pi Nt}{h} \right), t \right\rangle
\]
where \( R = 3 \), \( h = 7 \), and \( N = 8 \).
2. **Calculate the Derivative**
Compute the derivative \( \mathbf{r}'(t) \):
\[
\mathbf{r}'(t) = \left\langle -R \frac{2\pi N}{h} \sin \left( \frac{2\pi Nt}{h} \right), R \frac{2\pi N}{h} \cos \left( \frac{2\pi Nt}{h} \right), 1 \right\rangle
= \left\langle -3 \frac{16\pi}{7} \sin \left( \frac{16\pi t}{7} \right), 3 \frac{16\pi}{7} \cos \left( \frac{16\pi t}{
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 13 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

