The helix of radius R, height h, and N complete turns has the parametrization Nt r(t) = (Rcos (2¹). R sin (2¹),1). ),₁). h h Calculate the length s of a helix if R = 3, h = 7, and N = 8. (Use symbolic notation and fractions where needed.) S= Incorrect 7√/1+ 0 ≤t≤h 1152 49

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

This is my only attempt 

### Understanding the Length of a Helix

The helix of radius \( R \), height \( h \), and \( N \) complete turns has the parametrization

\[
\mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right) , R \sin \left( \frac{2\pi Nt}{h} \right) , t \right\rangle , \quad 0 \leq t \leq h
\]

To calculate the length \( s \) of a helix if \( R = 3 \), \( h = 7 \), and \( N = 8 \), we follow the steps below. (Use symbolic notation and fractions where needed.)

The first calculation provided in the image is:

\[
s = 7 \sqrt{ 1 + \frac{1152\pi}{49} }
\]

However, the response indicates that the answer is incorrect.

To compute the correct length of the helix, let's break down the necessary steps:

1. **Parametrize the Helix Equation**  
   Given the parameterization of the helix:
   \[
   \mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right), R \sin \left( \frac{2\pi Nt}{h} \right), t \right\rangle 
   \]
   where \( R = 3 \), \( h = 7 \), and \( N = 8 \).

2. **Calculate the Derivative**  
   Compute the derivative \( \mathbf{r}'(t) \):
   \[
   \mathbf{r}'(t) = \left\langle -R \frac{2\pi N}{h} \sin \left( \frac{2\pi Nt}{h} \right), R \frac{2\pi N}{h} \cos \left( \frac{2\pi Nt}{h} \right), 1 \right\rangle 
   = \left\langle -3 \frac{16\pi}{7} \sin \left( \frac{16\pi t}{7} \right), 3 \frac{16\pi}{7} \cos \left( \frac{16\pi t}{
Transcribed Image Text:### Understanding the Length of a Helix The helix of radius \( R \), height \( h \), and \( N \) complete turns has the parametrization \[ \mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right) , R \sin \left( \frac{2\pi Nt}{h} \right) , t \right\rangle , \quad 0 \leq t \leq h \] To calculate the length \( s \) of a helix if \( R = 3 \), \( h = 7 \), and \( N = 8 \), we follow the steps below. (Use symbolic notation and fractions where needed.) The first calculation provided in the image is: \[ s = 7 \sqrt{ 1 + \frac{1152\pi}{49} } \] However, the response indicates that the answer is incorrect. To compute the correct length of the helix, let's break down the necessary steps: 1. **Parametrize the Helix Equation** Given the parameterization of the helix: \[ \mathbf{r}(t) = \left\langle R \cos \left( \frac{2\pi Nt}{h} \right), R \sin \left( \frac{2\pi Nt}{h} \right), t \right\rangle \] where \( R = 3 \), \( h = 7 \), and \( N = 8 \). 2. **Calculate the Derivative** Compute the derivative \( \mathbf{r}'(t) \): \[ \mathbf{r}'(t) = \left\langle -R \frac{2\pi N}{h} \sin \left( \frac{2\pi Nt}{h} \right), R \frac{2\pi N}{h} \cos \left( \frac{2\pi Nt}{h} \right), 1 \right\rangle = \left\langle -3 \frac{16\pi}{7} \sin \left( \frac{16\pi t}{7} \right), 3 \frac{16\pi}{7} \cos \left( \frac{16\pi t}{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,