The height of a ball dropped from the roof of a building can be found by using the model h(t) = −16t2 + 400, where h(t) is the height of the ball in feet t seconds after being dropped.
The height of a ball dropped from the roof of a building can be found by using the model h(t) = −16t2 + 400, where h(t) is the height of the ball in feet t seconds after being dropped.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
The height of a ball dropped from the roof of a building can be found by using the model
h(t) = −16t2 + 400,
where
h(t)
is the height of the ball in feet t seconds after being dropped.(a)
Find
h(2).
h(2) =
Explain the meaning of
h(2).
It is the 2 .
(b)
Sketch a graph of this model.
(c)
Use your graph to estimate when the ball will hit the ground. (Include units in your answer. More information.)
The ball will hit the ground after being dropped.
(d)
Give a reasonable domain and range for this model. (Hint: This model will not work after the ball hits the ground.)
Domain:
(−∞, 400]
[0, 5]
[0, ∞)
[−5, ∞)
[0, 400]
Range:
(−∞, 400]
[0, 5]
[0, ∞)
[−5, ∞)
[0, 400]
![(b) Sketch a graph of this model.
h (t)
h(t)
h(t)
h(t)
500
500-
500
500
450
450
450
450
400
400
400
400
350
350
350
350
300
300
300
300
250
250
250
250
200
200
200
200
150
150
150
150
100
100
100
100
50
50
50
50
1.
3.
4.
7
1234 5 6
12 3 4 S 6 7
1.
2.
3.
4
O-30
@0-50
DO-50](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4a38e74a-5625-47be-a66b-cba773f8abfc%2F273badaa-231b-4683-b4cd-118f85e2cd93%2F0mpwd8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(b) Sketch a graph of this model.
h (t)
h(t)
h(t)
h(t)
500
500-
500
500
450
450
450
450
400
400
400
400
350
350
350
350
300
300
300
300
250
250
250
250
200
200
200
200
150
150
150
150
100
100
100
100
50
50
50
50
1.
3.
4.
7
1234 5 6
12 3 4 S 6 7
1.
2.
3.
4
O-30
@0-50
DO-50
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)