The height of a ball dropped from the roof of a building can be found by using the model h(t) = −16t2 + 400, where  h(t)  is the height of the ball in feet t seconds after being dropped.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The height of a ball dropped from the roof of a building can be found by using the model
h(t) = −16t2 + 400,
where 
h(t)
 is the height of the ball in feet t seconds after being dropped.
(a)
Find 
h(2).
h(2) = 
Explain the meaning of 
h(2).
It is the      2     .
(b)
Sketch a graph of this model.
 
 
(c)
Use your graph to estimate when the ball will hit the ground. (Include units in your answer. More information.)
The ball will hit the ground  after being dropped.
(d)
Give a reasonable domain and range for this model. (Hint: This model will not work after the ball hits the ground.)
Domain:
(−∞, 400]
[0, 5]
    
[0, ∞)
[−5, ∞)
[0, 400]
Range:
(−∞, 400]
[0, 5]
    
[0, ∞)
[−5, ∞)
[0, 400]
(b) Sketch a graph of this model.
h (t)
h(t)
h(t)
h(t)
500
500-
500
500
450
450
450
450
400
400
400
400
350
350
350
350
300
300
300
300
250
250
250
250
200
200
200
200
150
150
150
150
100
100
100
100
50
50
50
50
1.
3.
4.
7
1234 5 6
12 3 4 S 6 7
1.
2.
3.
4
O-30
@0-50
DO-50
Transcribed Image Text:(b) Sketch a graph of this model. h (t) h(t) h(t) h(t) 500 500- 500 500 450 450 450 450 400 400 400 400 350 350 350 350 300 300 300 300 250 250 250 250 200 200 200 200 150 150 150 150 100 100 100 100 50 50 50 50 1. 3. 4. 7 1234 5 6 12 3 4 S 6 7 1. 2. 3. 4 O-30 @0-50 DO-50
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,