The goal of this problem is to fit a trigonometric function of the form f(t) = co+c₁ cos(t) to the data points (0, 10.5), (,0.5), (, -7.5), (3, 0.5), using least squares. (a) The problem is equivalent to finding the least squares solution to the system Xc = y where X = (b) Find the coefficients of the best fit by finding the least squares solution to the system in part (a) Co = C₁ = and c = [C₁, C₂]T e
The goal of this problem is to fit a trigonometric function of the form f(t) = co+c₁ cos(t) to the data points (0, 10.5), (,0.5), (, -7.5), (3, 0.5), using least squares. (a) The problem is equivalent to finding the least squares solution to the system Xc = y where X = (b) Find the coefficients of the best fit by finding the least squares solution to the system in part (a) Co = C₁ = and c = [C₁, C₂]T e
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![### Problem Statement
The goal of this problem is to fit a trigonometric function of the form \( f(t) = c_0 + c_1 \cos(t) \) to the data points \((0, 10.5)\), \(\left(\frac{\pi}{2}, 0.5\right)\), \((\pi, -7.5)\), \(\left(\frac{3\pi}{2}, 0.5\right)\), using least squares.
#### Part (a)
The problem is equivalent to finding the least squares solution to the system \(Xc = y\) where
\[
X =
\begin{bmatrix}
1 & \cos(0) \\
1 & \cos\left(\frac{\pi}{2}\right) \\
1 & \cos(\pi) \\
1 & \cos\left(\frac{3\pi}{2}\right)
\end{bmatrix},
\quad
y =
\begin{bmatrix}
10.5 \\
0.5 \\
-7.5 \\
0.5
\end{bmatrix},
\quad \text{and} \quad
c =
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix}
\]
#### Part (b)
Find the coefficients of the best fit by finding the least squares solution to the system in part (a).
\[
c_0 = \hspace{2cm}
\]
\[
c_1 = \hspace{2cm}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffb2133c9-e1e5-4d56-9c72-044227328930%2F6c8d525a-257e-4b80-9027-e0af1d3a16e6%2Fp67jph_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Problem Statement
The goal of this problem is to fit a trigonometric function of the form \( f(t) = c_0 + c_1 \cos(t) \) to the data points \((0, 10.5)\), \(\left(\frac{\pi}{2}, 0.5\right)\), \((\pi, -7.5)\), \(\left(\frac{3\pi}{2}, 0.5\right)\), using least squares.
#### Part (a)
The problem is equivalent to finding the least squares solution to the system \(Xc = y\) where
\[
X =
\begin{bmatrix}
1 & \cos(0) \\
1 & \cos\left(\frac{\pi}{2}\right) \\
1 & \cos(\pi) \\
1 & \cos\left(\frac{3\pi}{2}\right)
\end{bmatrix},
\quad
y =
\begin{bmatrix}
10.5 \\
0.5 \\
-7.5 \\
0.5
\end{bmatrix},
\quad \text{and} \quad
c =
\begin{bmatrix}
c_0 \\
c_1
\end{bmatrix}
\]
#### Part (b)
Find the coefficients of the best fit by finding the least squares solution to the system in part (a).
\[
c_0 = \hspace{2cm}
\]
\[
c_1 = \hspace{2cm}
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)