The general solution of the differential d’y + y = f (x), xe (-0, 0), where dx? equation f is a continuous, real-valued function on (-00, 0), is (where A, B, C and k are arbitrary constants) (a) y(x) = Acos x+Bsinx+ [f (t) sin(x-t) dt (b) y(x) = cos (x+k)+ (t)s (x-t) dt %3D (c) y(x) = Acos x +B sin x + [ f (x-t)sint dt (d) y(x) = A cos x+Bsin x + | f (x+t)cost dt %3D
The general solution of the differential d’y + y = f (x), xe (-0, 0), where dx? equation f is a continuous, real-valued function on (-00, 0), is (where A, B, C and k are arbitrary constants) (a) y(x) = Acos x+Bsinx+ [f (t) sin(x-t) dt (b) y(x) = cos (x+k)+ (t)s (x-t) dt %3D (c) y(x) = Acos x +B sin x + [ f (x-t)sint dt (d) y(x) = A cos x+Bsin x + | f (x+t)cost dt %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The general solution of the differential
equation dy+
+y = f(x), xe(-∞, ∞), where
dx?
f is a continuous, real-valued function on
(-00, 00), is (where A, B, C and k are arbitrary
constants)
(a)
y(x) = Acos x +Bsinx+ f(t) sin(x-t) dt
%3D
(b)
y(x) = cos (x + k)+C[ƒ(t)sin(x – t) dt
f (t) sin(x - t) dt
(c)
y(x) = A cos x+B sinx + ƒ(x-t)sint dt
(d)
y(x) = Acos x+Bsin x + ƒ(x+t)cost dt](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3b9745a3-f370-480f-87c6-2a040137874d%2F8dd2b291-6e58-4f5d-b43d-5f4cad05d056%2F9xaoccn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The general solution of the differential
equation dy+
+y = f(x), xe(-∞, ∞), where
dx?
f is a continuous, real-valued function on
(-00, 00), is (where A, B, C and k are arbitrary
constants)
(a)
y(x) = Acos x +Bsinx+ f(t) sin(x-t) dt
%3D
(b)
y(x) = cos (x + k)+C[ƒ(t)sin(x – t) dt
f (t) sin(x - t) dt
(c)
y(x) = A cos x+B sinx + ƒ(x-t)sint dt
(d)
y(x) = Acos x+Bsin x + ƒ(x+t)cost dt
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)