The general solution of the 1st-order ODE, (x + 3y − 2)y′ = e−3(x+3y−2)² − y − 1/3(x − 2) is - Select one: a. y(x) = ln(3x + C) - 2 ○ b. y(x) = [¹¹n (6x + C) + (2 − x)] /3 ○ c. y(x) = 3 [+ln(18(x + C)) + (2 − x)√3] - 3√3 O ○ d. y(x) = [+ln(6x + C) ± (2 − x)] /3
The general solution of the 1st-order ODE, (x + 3y − 2)y′ = e−3(x+3y−2)² − y − 1/3(x − 2) is - Select one: a. y(x) = ln(3x + C) - 2 ○ b. y(x) = [¹¹n (6x + C) + (2 − x)] /3 ○ c. y(x) = 3 [+ln(18(x + C)) + (2 − x)√3] - 3√3 O ○ d. y(x) = [+ln(6x + C) ± (2 − x)] /3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The general solution of the 1st-order ODE,
(x + 3y − 2)y' = e−³(x+3y−2)² − y �� 1/3(x − 2) is
-
-
Select one:
a. y(x) = ln(3x + C) - 2
○ b. y(x) = [ln(6x + C) + (2 − x)] /3
O c. y(x) =
O d.
3√3 [±ln(18(x + C)) + (2 − x)√3]
y(x) = [½ln(6x + C) ± (2 − x)] /3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5950472e-2d4b-45cc-b99d-251e3315c4c5%2Fcab41e63-4f06-49b1-8a3a-3d985c14e98b%2Fbg0bey_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The general solution of the 1st-order ODE,
(x + 3y − 2)y' = e−³(x+3y−2)² − y �� 1/3(x − 2) is
-
-
Select one:
a. y(x) = ln(3x + C) - 2
○ b. y(x) = [ln(6x + C) + (2 − x)] /3
O c. y(x) =
O d.
3√3 [±ln(18(x + C)) + (2 − x)√3]
y(x) = [½ln(6x + C) ± (2 − x)] /3
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

