The general combinatorial formula for the nth triangular number (1, 3, 6, 10, 15, 21, .) is On+1Cn OntiC2 O 2n Cn On+iCn-2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The general combinatorial formula for the nth triangular number (1, 3, 6, 10, 15, 21,
.) is
On+1Cn
On+iC2
O 2n Cn
n+1Cn-2
acer
F12
Scr Lk
17ude
PrtSc
Pause
Break
F4
F5
F6
F7
F8
F9
F10
F11
Del
Hamel
SysRa/
Insert
DIG
8
9.
Transcribed Image Text:The general combinatorial formula for the nth triangular number (1, 3, 6, 10, 15, 21, .) is On+1Cn On+iC2 O 2n Cn n+1Cn-2 acer F12 Scr Lk 17ude PrtSc Pause Break F4 F5 F6 F7 F8 F9 F10 F11 Del Hamel SysRa/ Insert DIG 8 9.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,